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Chapter 1: General introduction

Zoonoses are infections that are naturally transmitted between vertebrate animals and
humans. Their importance is mainly linked to the danger they represent for humans. According
to the World Health Organization (WHO), zoonoses strike down 14 million people around the
world every year. At least 61% of all human pathogens are zoonotic, and have represented 75%
of all emerging pathogens during the past decade [170]. Zoonotic diseases have always
represented a risk for humans (e.g. rabies or anthrax are long-past known), but recent events,
such as Bovine Spongiform Encephalopathy (BSE) or swine Influenza outbreaks, showed that
major zoonotic diseases can have a huge economic and social impact and dominate the media
headlines for some time. Moreover, zoonoses also prevent the efficient production of food of

animal origin and create obstacles to international trade in animals and animal products.

Recently, the European Commission was concerned about the increase within the EU in the
number of cases of Q fever, a zoonosis due the bacterium Coxiella burnetii. Although Q fever
has been present in cattle, sheep and goats holdings since a long time [107], human cases were
sporadically reported until 2007 and the infection was seen as a rare occupational disease for
farmers, veterinarians, and slaughterhouse workers [42]. However, in 2008, a total of 1,594
confirmed cases were reported in the EU, mainly in the Netherlands and Germany,
corresponding to a 165.5% increase compared with the number of confirmed cases reported in
2007 [39]. In 2009, there were more than 2,300 human cases in the Netherlands, mainly in

the form of atypical pneumonia. 19.7% of them were hospitalized [159].

Q fever is essentially an airborne disease and human infection occurs mainly after inhalation
of aerosols generated from excreta from infected livestock (abortion and birth material,
faeces, urine, milk) [8]. In addition, in ruminants, reproductive disorders are frequent signs of
infection [103] and can impact production and economic efficiency of the farm. Thereby, Q
fever is an issue in both public and animal health. The control of this infection in ruminants is
therefore crucial to limit the infection spread in livestock as well as the zoonotic risk. The
European Food Safety Authority (EFSA) recently highlighted the need to objectively assess
the relevant epidemiological parameters (such as rates of within-herd transmission, between-
herd spread and spillover from animal populations o humans) and the effectiveness of control
options for C. burnetiiinfection in domestic ruminant populations [39]. Our work is in line with

the EFSA opinion.

We focused on dairy cattle and our aim was to better understand the within-herd pathogen

spread in order to better control the infection.
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Chapter 1: General introduction

I- Pathogen characteristics and host response to infection

In 1935, Australian scientists worked to identify the cause of a febrile illness among abattoir
workers in Brisbane while American scientists struggled to identify a novel microorganism they
had isolated from ticks. Without knowing it, they were working on the same pathogen, C
burnetii, a small obligate intracellular bacterium classified in the y-subdivision of

Proteobacteria, in the order of Legionellales [107].

Since its discovery, Q fever has been reported worldwide with the exception of New Zealand
[66, 62]. The bacterium can infect a broad spectrum of hosts including domestic animals
(livestock and pets), wildlife and even non-mammalian species including reptiles, fishes, birds
and ticks. Infection occurs mainly after inhalation of contaminated aerosols. € burnetii is
extremely infectious: under experimental conditions, the inhalation of a single Coxiella cell can
produce infection and clinical diseases in humans [150]. Within hosts, the bacterium resides
within the phagolysosome of monocytes and macrophages. The organism may come in the form
of a large cell variant (LCV), a small-cell variant (SCV), and a small dense cell (SDC). The LCV
of C burnetiiis intracellular and metabolically active whereas the SDC and SCV forms are able
to survive extracellularly as infectious particles [110]. The bacterium can then survive very
well in the environment: up to 42 months at 4-6°C in milk, 12 to 16 months in wool, 120 days in

dust, 49 days in dried urine and 30 days in dried sputum [115].

Several typing methods have been used for the characterisation of C burnetii strains.
Restriction fragment length polymorphism (RFLP) and pulsed field gel electrophoresis (PFGE)
were performed for the differentiation of 80 C burnetii isolates derived from animals and
humans in Europe, USA, Africa and Asia. This allowed the distinction of 20 different groups
corresponding to the geographical origin of the isolate. However, no correlation between
restriction group and virulence of isolates was detected [68]. More recently, fwo Polymerase
Chain Reaction based (PCR-based) methods have been described to type ¢ burnetii, MLVA
(multi-locus variable number of tandem repeats analysis) [14, 147] and multispacer sequence
typing (MST) [55]. To date, these techniques are considered o be the most discriminating
methods for € burnetii, allowing the identification of up to 36 distinct genotypes. In the near
future, these tools will probably be very useful for epidemiological investigation, particularly

to clarify linkages regarding the source of infection [39].

Cell-mediated immunity probably plays the critical role in eliminating €. burnetii [8]. According
to Read et al. [129], the presence of either CD4+ or CD8+ T cells was sufficient to control

infection in mice, and B cells were not necessary for primary immunity. However, other studies

12



Chapter 1: General introduction

suggested that both humoral and cell-mediated immune responses were important for host
defense against C. burnetii infection: freatment of € burnetii with immune sera was reported
to make the bacterium more susceptible to phagocytosis and destruction by normal
polymorphonuclear leukocytes or macrophages [171]. Moreover, C burnetii exists in two
antigenic phases called phase I and phase II. This phase variation phenomenon is similar to
the smooth to rough lipopolysaccharide transition of other Gram-negative bacteria [12]. This

antigenic difference is important in diagnosis in humans.

II- Q fever in Humans

1. Routes of transmission to humans

Airborne transmission of ¢ burnetii through inhalation of aerosolised bacteria or
contaminated droplets and dust is the principal mode of transmission to humans [8]. Indeed,
infected animals shed bacteria into the environment through faeces, vaginal mucus, urine, milk
and especially parturition products [11, 20, 59]. Goats, sheep and cattle are recognized as the
main source of human infection [96, 109, 142, 164] although dogs and cats can sometimes be
involved in the transmission to humans [29, 124]. As C. burnetii survives very well in the
environment, the bacterium contaminates aerosols and surrounding dust [167]. Moreover, wind
plays a role in C burnetii transmission: in France, a statistically higher incidence of human
cases was associated with an increased frequency of the mistral one month before the onset
of the disease [151]. In the literature, estimates regarding the distance that infectious
particles can spread by air span a large range: from 400m up to 40 km, depending on the
studies [38]. A recent study showed that, during the Dutch epidemics, persons living within 2
kilometres of an affected dairy goat farm had a much higher risk for Q-fever than those
living more than 5 kilometres away [142]. Some environmental factors, soil moisture or

vegetation density can also play a role in € burnetii transmission [67].

Consumption of raw milk could be a source of infection [107]. However, according to the EFSA
Panel on Biological Hazards, drinking milk containing C. burnetii can result in seroconversion but
it remains unclear whether, and if so, to what extent, clinical disease can result from the
consumption of milk or diary products, or of other foods containing C. burnetii [39]. Besides,
the French Agency for Food Safety estimated that in case of human contamination by

consumption of raw milk, the gross risk was to 'nil to negligible' [2].

13



Chapter 1: General introduction

Other transmission routes appear rare. Ticks can be naturally infected with . burnetii, but
they do not appear to be important in the maintenance of infections in humans [107]. Person-

to-person or sexual transmissions are anecdotal [8, 112].
2. Clinical manifestations

Q fever is characterised by a clinical polymorphism and a frequently asymptomatic expression.
Men are more offen symptomatic than women, despite comparable exposure and
seroprevalence, as well as people over 15 years compared to children [100, 152]. After an
incubation period of approximately 20 days, the infection leads in around 40% of cases to an
acute Q fever (Figure 1.1). The acute disease frequently includes fever, headaches, myalgias,
arthralgias and cough [110]. Other manifestations are pneumonia, hepatitis, myocarditis, skin
rash and neurologic signs [8, 128]. In acute cases of Q fever, the antibody level to phase IT
antigens is usually higher than the one of phase I, often by several orders of magnitude. In

chronic disease, the reverse situation is observed.

Chronic Q fever may develop, many months to years after infection, in at-risk patients, i.e.
patients with heart valve or vascular diseases or patients with cancer or immunosuppression.
This chronic form appears in some 2% of acute symptomatic cases and the fatality rate may
vary from 5 to 50% [38]. The most frequent manifestations are endocarditis and vascular
infections but fever, loss of consciousness, weight loss, general fatigue, night sweats and

hepatomegaly may also be present [168].

60%

Pregnancy :
abortion, chronic carriage

e e

Primary Chronic
infection infection

~ ~

Endocarditis
Vascular infections

asymptomatic

Incubation
—

2-3 weeks

40% symptomatic :
Flu-like syndrome
Hepatitis
Pneumonia
Meningoencephalitis

Figure 1.1. Q fever natural history in humans in the absence of treatment
(from Angelakis & Raoult [8])
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Chapter 1: General introduction

In addition, when a pregnant women is infected by €. burnetii during pregnancy, there is a risk

of abortion, preterm delivery or low birth weight [8].

3. Magnitude and distribution of human Q fever in the

European Union

Q fever in humans is a communicable disease for which surveillance is mandatory in the EU. In
2007, 637 confirmed cases were reported to the European Centre for Disease Prevention and
Control (ECDC), mainly in the Netherlands (168 cases), Spain (159 cases), Slovenia (93 cases),
Germany (83 cases) and Bulgaria (36 cases). In 2008 and 2009, respectively 1,011 and 2,357
confirmed cases were reported in the Netherlands [39]. The months with the highest number

of reported cases were July and August.

According to this spreading pattern, the EFSA concluded that human Q fever can be
considered as a relatively infrequent clinical disease and that there is no obvious increase in
the general disease risk [39]. However, human cases are likely to be underreported and the Q
fever epidemic in the Netherlands has shown some divergence from the epidemic
characteristics described until now: the infection persists over consecutive years and has
sickened mainly people who never had contact with animals. The drivers of such an outbreak
remain unclear. The epidemic could be caused by a more virulent strain of € burnetii[42] or by
changes of farm characteristics. According to the EFSA, most of the human Dutch Q fever
cases are indeed linked to abortion in large dairy goats farms, and to a much lesser extent in

dairy sheep farms [39].

ITI- Q fever in domestic ruminants

1. Modes of contamination

Inhalation of contaminated aerosols is the main route of infection for ruminants. Transmission
by ticks is also possible: the bacterium was isolated in several tick species [63, 111, 154].
However, the importance of this mode of contamination has not been determined. In the same
way, the contamination by ingestion of an infected placenta has, to our knowledge, not been
evaluated yet. Although mice were found 10,000 times less susceptible to the infection when
orally infected than when intraperitoneally infected [37], cats and dogs may be infected by

the consumption of placentas [107]. Consequently, further studies are needed to quantify the
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Chapter 1: General introduction

importance of this mode of contamination for ruminants. As viable € burnetii were detected in
the semen of bulls, sexual transmission of the bacterium between cattle should be possible
[81], but the role of this route of transmission within a herd has not been explored until now.
Lastly, €. burnetiiinfection has been reported in wild mammals (especially rats [166]) and birds

which could represent a reservoir for C. burnetiiinfections.
2. Clinical manifestations

Most of the C burnetii infected animals remain asymptomatic but reproduction disorders can
occur [103]. In Plommet et al. [125], amongst eleven heifers inoculated by the intradermal
route then inseminated, five aborted or remained sterile. Indeed, as the female uterus and
mammary glands are primary sites of chronic infection [107], €. burnetii infection can induce
abortions, stillbirth and delivery of weak lambs, calves and kids. In the majority of cases,
abortion occurs at the end of gestation without specific clinical signs appearing before [12].
High abortion rates can be observed in some goat flocks [120, 135]. In cattle, metritis is
frequently the unique manifestation of the disease [19, 153]. Aborting females recover rapidly
and generally do not abort during the following gestations, while metritis can persist for
several months [12]. Pneumonia and endocarditis are not described in animals except in
experimental conditions. In Plommet et al. [125], all inoculated heifers developed a pneumonia
24 to 36 hours after the inoculation and 50% of the animals presented cardiac symptoms or

pulmonary lesions in the months following the infection [125].
3. Characteristics of the bacterial shedding

C. burnetii infection in ruminants often becomes chronic, with persistent bacterium shedding:
cows can shed C. burnetii for several months [59] and goats at successive parturitions [23].
This shedding is of major importance as it contaminates the environment and can lead to the
infection of both susceptible animals and humans. For cows, ewes and goats, Rodolakis et al.
[131] reported that, contrary to expectation, the shedding of £ burnetii could be not related
to parturition. In C burnetii infections, a great heterogeneity between shedders has been
described [11, 37, 57, 131]: the shedding duration, level (i.e. the quantities of bacteria shed)
and routes are variable between animals. Infected animals can indeed shed bacteria through
birth products, vaginal mucus, faeces, and milk [132]. Amongst the three latter, no
predominant route was identified in 242 dairy cows from 31 herds in which abortions due to €
burnetii were reported [57]. Besides, in the same study, 65% of the shedder cows shed by
only one route. However, in asymptomatic herds, cows shed more frequently in milk than in

vaginal mucus or faeces [59, 131]. The shedding duration and shedding levels are also variable
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between animals: cows can shed from a sporadic to a three-month persistent way and the
concentrations of bacteria shed in vaginal mucus or milk can vary from less than 100
bacteria/g to more than 1,000,000 b/g [59]. Although the presence of heavy shedder cows
(i.e. animals shedding bacteria in higher titres and in a persistent way) was reported in milk
[69], the role of these animals in € burnetii transmission between animals and from animals to
humans has not been determined yet. In goats and ewes, the same shedding routes are
described and in the same way, are rarely concomitant [135]. Ewes were found to shed mostly
in faeces and vaginal mucus [131] while goats were reported to shed mainly in milk and vaginal

mucus [11, 131, 135].

The presence of heterogeneity in a population (e.g. variability in age, contact structure,
infectiousness, etfc...) is known to affect infection dynamics in many diseases. As an example, a
model assuming that all farms and all animals are governed by the same underlying dynamics
was unable to explain the highly overdispersed distribution of prevalences of Escherichia coli
0157 shedding on Scottish farms [106]. The best fit to the prevalence data was obtained
when incorporating individual variability in transmission. In many cases, the heterogeneity of
shedding has indeed a great impact on both the infection dynamics and the effectiveness of
control measures: in dairy cattle infected by Sa/monella, the presence of host heterogeneity in
infectious period and contagiousness decreased the effectiveness of population-wide control
strategies, making necessary the application of strategies targeting the most contagious
animals [86]. For C burnetiiinfections, the influence of this heterogeneity of shedding on the
infection spread has not been evaluated yet. Hence, it is necessary to take into account the
variability of the shedding duration, shedding levels and shedding routes in our epidemic model

when representing €. burnetii spread and testing effectiveness of control strategies.
4. Diagnosis

Currently, the PCR is a sensitive and rapid mean to directly detect € burnetii and therefore to
identify the shedders [39]. This technique can be used on a wide range of samples (vaginal
mucus, abortion material, faeces and milk). Real-time PCR is preferable to conventional PCR as
it allows high sample throughput [122] and the quantification of the bacterium in the sample.
As an example, a real-time PCR assay applied to bulk tank milk samples appears to be a valuable
tool to assess on a larger scale the status of herds towards C burnetii shedding [58].
Quantitative PCR  kits are now commercially available. Moreover, although

immunohistochemistry was until now useful when considering potential causes of abortions in
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ruminants, multiplex PCR that can detect and differentiate between different abortive

pathogens is now under development [24].

For the serological testing, the complement fixation (CFT) was considered the reference test
for historical reasons [39]. However, the indirect immunofluorescence assay (IFA) and above
all, ELISA, are now widely used. According to Kittelberger et al. [79], two commercial ELISA
were more sensitive than the CFT in all panels from infected ruminants: their sensitivities
were 81% for the Pourquier ELISA and 95% for the IDEXX ELISA. However, none of the
tests are able to distinguish between acute and chronic infection or between vaccinated and
naturally infected animals. Besides, a serological test does not give clear information about the
individual infection status [39]: some infected animals are indeed seronegative while they are

shedding.
5. Magnitude and distribution in the European Union

There are currently no EU rules about the notification and surveillance of £ burnetiiinfection
and/or Q fever in domestic ruminants. Based on available data [39], €. burnetii is present in
most, if not all, member states. It does not appear to be an increase in Q fever
prevalence/incidence but comparison over time and between countries is problematic as there
are considerable differences in testing protocol and data availability. In Gran Canaria island
(Spain), 34.7% of 1,249 randomly selected ruminants (60.4% of goats, 31.7% of sheep and
12.2% of cattle) were reported seropositive using an indirect ELISA kit [134]. In northern
Spain, a serosurvey was carried out in 1,379 sheep (42 flocks), 626 beef cattle (46 herds) and
115 goats (11 herds) [138]: ELISA anti-C. burnetii antibody prevalence was slightly higher in
sheep (11.8 + 2.0%) than in goats (8.7 + 5.9%) and beef cattle (6.7 + 2.0%); herd prevalence
was 74% for ovine flocks, 45% for goat flocks and 43% for cattle. In Denmark, a study based
on bulk tank milk samples from 100 randomly selected dairy herds demonstrated a prevalence

of 59% antibody positive herds [3].
6. Control

In France, in infected herds, interventions against Q fever mainly consist in environmental
measures such as destruction of placentas or disinfection of births locations, and in medical
measures such as antibiotic treatment like injections of tetracyclines during the last month of

gestation and vaccination [132].

As placentas and aborted foetuses contain high numbers of C burnetii, births should

preferentially take place in a specific location which can easily be disinfected and risk material
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(placentas and aborted foetuses) should be collected and removed to specific rendering plants
[2]. Moreover, the manure can be a potential vector of the infection [21], although exact levels
of C burnetiiin manure have not been accurately determined yet. Either chemical [9] or heat
treatment can be used to reduce the load of viable bacteria [39]. Tick control may also play a

role in the transmission of the infection.

Observations concerning antibiotics are contradictory. In Berri et al. [22], oxytetracycline was
administered in a flock of sheep after a Q fever episode but did not prevent further abortions
and did not immediately suppress the shedding of the bacteria. However, this tfreatment may
have affected the ewes in the long term, and prevented further spread of the infection to
ewes and lambs. In Astobiza et al. [16], the oxytetracycline treatment neither prevented the
shedding of bacteria nor limited the duration of bacterial excretion. The EFSA concluded
that, although antibiotic treatment is used effectively in humans to reduce clinical symptoms
associated with Q fever, the same ftreatment in animals is not effective in reducing neither

the level nor the duration of € burnetii shedding and should be avoided [39].

According to Rodolakis et al. [132], vaccination is an efficient tool to control the disease.
Vaccination with an antigenic phase I vaccine in cattle was shown to suppress the shedding in
milk, placenta and colostrum [25, 139]. More recently, Arricau-Bouvery et al. [13] compared
the efficiency of phase I and phase IT vaccines in goats: the phase I vaccine prevented
abortions and dramatically reduced the frequency of bacteria shedding in the milk, vaginal
mucus and faeces while the phase IT vaccine did not affect the course of infection. Thus,
phase I vaccines are much more effective than phase II vaccines. In Rousset et al. [136], the
vaccine appeared nheither able to prevent infection in exposed kids, nor to clear infection in
infected goats, but was effective in reducing the level of shedding in a heavily infected herd.
In fact, preventive vaccination (before infection) is much more effective than outbreak
vaccination [39]. According to Guatteo et al. [61], a susceptible non pregnant cow had a five
times lower probability of becoming a shedder than an animal receiving placebo. Vaccination
seems a long-term control strategy but field and experimental data are needed to improve our

understanding of the infection spread in and between infected vaccinated populations [39].

Other control options can be used in emergency situations when public health is at risk. Culling
of pregnant animals, temporary breeding ban or control of animal movements are some of the

measures implemented in the Netherlands during the current outbreak [39].
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IV- Why a modelling approach to understand C. burnetii

infection and assess control strategies?

1. Why not field observations?

To assess the effectiveness of control strategies within a herd, different approaches are
available. Impacts of the control measures can be directly observed in the field. However, the
spread of €. burnetii within a herd results in a complex process. The infection of susceptible
animals is linked to the contamination of the environment, and therefore to the shedding of
bacteria. There are different types of shedders (e.g. seronegative versus seropositive ones),
and a same type of shedders shed by different shedding routes, for a variable duration and in
variable quantities. Follow up the shedding within a herd is unfeasible on the long run.
Moreover, if the aim is to compare different types of control strategies, such a follow-up
would have to be performed in a high number of herds for a long period of time. A solution to
monitor over time the spread of € burnetiiwithin a herd would be the use of a diagnostic test
at the herd level. However, at the present time, although a real-time PCR applied to bulk tank
milk samples is a valuable tool to assess the status of herds towards C. burnetii infection [60],
there is no clear correlation between a positive result and either the prevalence of shedders
in the herd or the environmental bacterial load. The direct monitoring of the environment is
therefore of great interest. Recently in the USA, Kersh et al. [78] collected 1,600
environmental samples (mainly soil and dust on solid surfaces) and performed quantitative PCR.
23.8% of the samples analyzed were positive for C burnetii DNA, and the locations that
contained C burneti DNA were diverse: unsurprisingly dairy farms, cattle feed lots,
veterinary hospitals, and goat-breeding facilities but also high schools, retail stores, grocery
stores, football stadiums, banks, and post offices. Most of the samples analyzed had a fairly
low number of bacteria detected but 10% of samples were much more contaminated. However,
it is difficult to directly assess the viability of the bacteria in these samples: if the soil or
dust sample is directly placed onto cultured host cells, the culture will be contaminated by a
variety of microbes present in the sample. Viability is best determined by injection of
environmental materials into mice but this test cannot be easily used in routine because of its
cost and its logistical constraints. Thus, current methods monitoring the environmental
bacterial load allow neither easily determining the risk of infection for susceptible individuals
nor following the infection spread. A modelling approach seems then relevant when studying C.
burnetii spread: the more complex a phenomenon is, or the more expensive and difficult it is to

study, the more value there is to explore models [163].
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2. Roles of epidemiological modelling

A model is a simplified representation of a complex phenomenon. By definition, all the models
are "wrong” because they make simplifying assumptions [77]. However, modelling is an essential
tool, particularly useful every time a major public health issue is raised. As an example, the
infection by the Human Immunodeficiency Virus started being perceived in a different way
when biomathematicians showed that observed data were compatible with the assumption that
100% of infected people develop the disease. Before, as only a small part of seropositive
people showed clinical signs, the asymptomatic seropositive people were considered as healthy

carriers [158].

In epidemiology, models have different roles. Prediction is the most obvious one and often
aims at guiding policy decisions [77]. For quantitative prediction purposes, the model has to be
accurate and validated (i.e. with the smallest uncertainty which could impact the conclusions).
This objective is most of the time difficult to reach. When a new infection is introduced in a
former susceptible area, no historical data are available. In addition, an epidemic reference
situation in the absence of control measure or with a perfectly known control programme is
rarely recorded, especially for animal infectious diseases [45]. Thus, most of the fime,
although models used to evaluate control strategies are sophisticated and parameter-rich,
model conclusions are not quantitative. However, qualitative outputs are enough for a large
range of purposes and especially for the comparison of different scenarios (e.g. spread of an
infection in different regions, for different pathogen strains, for different control measures,
etc..). A model also helps understanding how an infectious disease spreads in the real world
[77]. It provides the modeller a virtual world in which everything can be recorded and every
factor can be examined. For example, it is possible to explore the effects of variable numbers
of partners on the spread of sexually transmitted diseases or the effects of neighbourhood
contacts or animal purchases on the spread of livestock diseases. Besides, a model can allow
estimating non observable parameters. For instance, some events can be very rare in the real
world but have major consequences in public health. Their frequency has then to be assessed
but this is hardly feasible through field observations. As an example, the residual risk of HIV
infection through blood transfusion is now very low. It is unfeasible to assess by a comparative
experiment the potential benefit of an additional prevention strategy. Instead, a model can be
used to estimate this infection risk and simulate control scenarios [158]. Although estimation
of parameters can be considered as a role in itself, it also helps understanding the infection
process and is a prerequisite for prediction purposes. At last, modelling allows highlighting

gaps of knowledge: to develop models, modellers need quantitative data whereas most of the
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time, only qualitative data is available in the literature or known by experts. Models are then a

mean to critically evaluate the range of information available on the modelled system.

It has to be highlighted that modelling and field or experimental work are complementary
approaches (Figure 1.2). On one hand, as we will see later, data is required to conceptualize the
model, estimate the value of parameters and validate the model. On the other hand, models
help testing biological assumptions, optimizing experiments protocols or identifying gaps of

knowledge.

Test of
biological hypotheses

Validation

Parameter

Comparison of scenarios wehraen

System
representation

Identification gaps of
knowledge

BIOLOGICAL
KNOWLEDGE

Figure 1.2. Mutual input of biology and modelling (from Ezanno et al. [45])

3. An example of epidemiological model in animal

health

In livestock, epidemic models have been developed for various infectious diseases such as
tuberculosis [71], brucellosis [40], BSE [6], Bovine Viral Diarrhoea [162], Escherichia coli
infections [90, 157, 172], Salmonella infections [85], paratuberculosis [101], Contagious Bovine

Pleuropneumonia [102], bluetongue [148] or foot-and-mouth disease [76].

A well-known example of mathematical model in domestic ruminants is the approach developed
by Keeling et al. [74] representing the 2001 foot-and-mouth disease (FMD) outbreak. The aim
of this study was to understand how spatial and individual heterogeneities influenced the
course of the epidemic and to compare different vaccination and culling scenarios. The FMD

outbreak was characterised by both a high probability of local spread and less frequent
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longer-range transmission due to fomites and personnel movements. There was additional
heterogeneity in farm size and species composition. In the model, the susceptibility and
infectiousness of a farm were assumed varying according to its size and species composition.
The model was fit to data, and a good agreement was obtained. It is worthy that the inclusion
of the host species and herd-size heterogeneities in transmission were required to reach this
good agreement and to properly simulate the spatial aggregation of cases. Large farms, and
especially cattle ones, were indeed found to have a key role in the infection spread. Modeling
demonstrated that culling infected farms, their direct contacts and contiguous farms was
much more effective in reducing both the number of cases and the total number of culled
farms than culling infected farms only. The delay from infection report to culling was also an
important factor influencing the effectiveness of the control measures. Moreover, Keeling et
al. considered the potential impact of both reactive and prophylactic vaccination on future
FMD epidemics in the United Kingdom [75]. Mass prophylactic vaccination campaign could
reduce the size and duration of the epidemic and vaccinating above 80,000 farms (over the
100,000 cattle farms in the UK) would even prevent almost all major epidemics. In addition, at
the start of an outbreak, mass reactive vaccination, in combination with culling and animal
movements restrictions might also control ongoing epidemics. On the contrary, ring vaccination

would have a limited effectiveness.

This example shows (i) how important is to take into account the presence of host
heterogeneity in a population, and (ii) how models can help understanding the course of the
infection and guide decisions makers. From a practical point of view, this model played an
important role in the formulation of the DEFRA's (Department of Environment, Food and Rural
Affairs of the United Kingdom) contingency plan published in 2004 [77]. However, before
model conclusions can inform policy, economical, sociological and logistical constraints have to
be taken into account [75]. For example, farmers will have to be sure that vaccination will not
devalue or limit the sale of their stock, or that they will get compensation. Besides, as
vaccination will undoubtedly suppress clinical disease but not always infection, careful
surveillance will therefore be required. Thus, model results have to be set back in the real
world before being used for decision purposes. At last, this model was based on extensive data
of a single epidemic. For an outbreak with a different strain (i.e. with different transmission
properties and host specificities) or for an outbreak in another location (i.e. with different
farming practices or weather conditions), the model will have to be adapted to the new

situation before conclusions could be drawn from its outputs.
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V- Objective and outline of the thesis

Because of the zoonotic risk induced by €. burnetii infections and their economic impact, there
is a need to design effective control measures against € burnetii spread in cattle. The general
objective of this thesis is to develop a model representing the spread of £ burnetii within a
dairy cattle herd in order to better understand the natural course of infection and to
enlighten decision makers on the effectiveness of control measures. To provide a
comprehensive description of the infection dynamics, we first aimed at estimating the main
epidemiological parameters and then at identifying those that have the strongest impact on
the disease spread pattern. When focusing on control measures, we aimed at comparing the
effectiveness of different vaccination strategies in infected herds. Moreover, the
identification of influencing parameters performed in the second part of our work could help
to propose other potentially effective control strategies specifically impacting these key

parameters of the disease spread.

Our general objective was reached in three stages (Figure 1.3). We first designed a model
representing C. burnetii spread within a dairy herd and assessed its main epidemiological
parameters from field data in a Bayesian framework. Secondly, as a great heterogeneity
between C burnetii shedders with a potential impact on the infection dynamics has been
described, we chose to explicitly represent in our model the shedding routes and levels. We
then performed a sensitivity analysis in order to identify the parameters, and especially those
related fo the heterogeneity of shedding, whose variation highly influences the infection
dynamics. Lastly, we represented in the model different vaccination strategies and tested

their comparative effectiveness by simulation.

Chapter 2 of the thesis first explains the main steps to set up a model. It then describes the
field data we used to conceptualize the €. burnetii model and infer its parameters. The data
set consists of individual health states of 235 cows of five chronically infected dairy herds
sampled from one to five times over a four-week period. The stochastic individual-based model
in discrete time we developed to represent the evolution of £ burnetiiinfection, as well as the
Markov chain Monte Carlo methodology we used to estimate the parameters of interest are

then presented.

Chapter 3 first details the importance of heterogeneity in a host population when studying an
infection dynamics. It then describes the way the individual variability of the shedding
duration, routes and levels were represented in the model. General aims and methods in

sensitivity analysis are afterwards presented. Lastly, the approach based on a Principal
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Component Analysis followed by an ANOVA that we performed is explained and the influence

of the different epidemiological parameters on the model outputs is detailed.

Chapter 4 presents different ways to include vaccination in an epidemic model. It then
describes how we adapted our dynamical model previously developed to simulate the impact of
three different vaccination strategies (vaccination of both cows and heifers for 10 years,
vaccination of heifers only for 10 years or vaccination of both cows and heifers for 3 years) on

the infection dynamics and presents our results.

Finally, chapter 5 provides a general discussion on the PhD project. It presents the main
results related to this thesis objectives and their potential field application. The modelling

approach chosen is also discussed. Lastly, a few potential future directions are presented.
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CHAPTER 2

ELABORATION OF A MODEL REPRESENTING THE
SPREAD OF €. BURNETII WITHIN A DAIRY

HERD AND ESTIMATION OF ITS MAIN

PARAMETERS FROM DATA
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Chapter 2 : Elaboration of the C. burnetii mode/ and estimation of its main parameters

In the first section of this chapter, the main steps of the construction of a model and its
confrontation to data will be described. Secondly, we will present the model we developed to
represent the within herd € burnetii spread. As both model conceptualization and parameter
assessment depend on field data, we will first describe the data we used. Then, we will
justify the model structure and formalism that we chose. At last, the main part of this
chapter will be presented as it was published in the Proceedings of the Royal Society B [35].
Tt deals with the assessment of the main epidemiologic parameters involved in the dynamics

of within herd C. burnetii spread from field data using a Bayesian approach.

I- Some generalities on how to build a model and to

confront it to data

1. Choice of the model structure

The first step when developing a model for the spread of an infectious disease is to choose
its structure: the different health states and transitions between them have to be defined.
This backbone should reflect the natural history of the infection. If the population is not
homogeneous with respect to the disease, the main categories in the population itself have
also to be specified: according to Diekmann & Heesterbeek [36], the state of an individual is
the set of information about the individual that is relevant to determine its future
behaviour. Tt comprises its health state as well as other characteristics (such as age, genetic
composition, stage of development, etfc...) that may impact the infection dynamics. Classically,
the health states considered are S, susceptible, and I, infectious. This SI model can be used
for diseases like HIV: an individual is infectious as soon as infected, and for its whole life.
An SIS structure is used for curable diseases: infected individuals are infectious until they
are treated or recover and become susceptible again [163]. If there is a non negligible delay
between the infection and the infectiousness, the health state £, exposed, can be added.
Moreover, if individuals are immune to further infection after they have been infected, they
enter the health state R, recovered. SIR and SEIR are standard model structures (Figure
2.1).
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SIR | Susceptible H Infectious l—bl Recovered/immune |
SEIR | Susceptible H Exposed I—»l Infectious I—DI Recovered/immune

Figure 2.1. Structure of SIRand SEIR models

It has to highlight that the different phases of clinical and infection dynamics do not occur
simultaneously (Figure 2.2). However, they are sometimes not distinguished in mathematical

models (e.g., symptomatic and infectious periods are considered identical).

incubating symptomatic recovered l Clinical

) statuses

susceptible latent infectious immune l Infection
) statuses

Immune
response

Pathogen
shedding

Infection Time since infection

Figure 2.2. Individual infection status vs. clinical status in a simplified infection process
(adapted from Keeling and Rohani [77] and Ezanno et al. [45]).

Depending on the disease, other health states and transitions can be specified: as an
example, in some paratuberculosis models [101], health states T, transiently infectious, Is /4,
subclinically infected low shedder, Is 4.4 subclinically infected high shedder or I, clinically
affected, are represented. The definition of health states and their associated transitions
is mostly based on the biology of the pathogen, host immune response and available data. The
classic SIR structure can then be modified to obtain more sophisticated variants. In
addition, the research question strongly determines the structure of the model [163]: as an
example, if the model aims at exploring the impact of treatment use, considering additional

states like 'successfully treated' or 'unsuccessfully treated’ can be of great interest.

Besides, as previously mentioned, the population can be divided into distinct homogeneous
classes with different behavioural characteristics (i.e. all members of a class have
comparable risk of both contracting and transmitting infection) [77]. Age-structured models
are frequently used when modeling childhood diseases, whereas risk-structured models are

considered when modeling sexually transmitted diseases. For livestock diseases, models can
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take into account the herd structure and different groups of animals (i.e. calves, heifers,
lactating cows, and dry cows [40, 162]). The representation of host heterogeneity in models

will be presented in more details in Chapter 3.

2. Choice of the mathematical formalism

Models can be deterministic, describing average dynamics, or stochastic, considering that
chance can have a great impact on the infection dynamics [163]. As an example, in a SIR
deterministic model, the rate at which individuals recover is fixed: for a given state of
variable I, there is always the same number of individuals going from I to R during a time
step. For a SIR stochastic model, I individuals have a given probability of transition from I
to R and, due to random draws, the number of individuals going from I to R during a time
step is variable from one model repetition to the other. Deterministic formulations are
suited for large populations where randomness has relatively little overall impact, whereas
stochastic models are more appropriate for small populations and rare events where the

fluctuations have larger effects [45].

The scale and unit of modelling have also to be defined. The spread of a livestock infectious
disease can indeed be modelled within a herd (the unit of modelling is then the animal) or
between herds (the unit of modelling is then the farm). The scale is closely related to the
research question. In most circumstances, disease transmission is a localized process. If, for
instance, the study is aimed at exploring the infection spread in a school after an infected
child is introduced, the unit and scale should be the individual and the population
respectively. However, movements of individuals between human or animal populations
facilitate the geographical spread of infectious diseases [77]. If the study is focused, for
example, on determining the influence of neighbouring relationships and animal movements on
the infection dynamics, a between herd scale should be considered in the model. For such
models, the within farm infection dynamics is explicitly represented or not. In the previously
described FMD model (see introduction IV.3.), the unit of modelling is the farm: due to the
rapid transmission of the virus between animals situated at the same location, the within
herd infection dynamics can be assumed negligible. Therefore, the whole farm is considered
infected as soon as an animal is infected. On the contrary, for similar time scales but
moderately spreading pathogens like the Bovine Viral Diarrhoea Virus, the within herd
dynamics should be represented in details since it is unrealistic to assume that the entire

farm is infected as soon as a single animal is infected [34]. For models describing the spread
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of a pathogen at a larger scale (region, country, or world), the spatial positions of hosts are
often taken into account. The previously cited FMD model aimed at simulating the spread of
the FMD over the whole United Kingdom, it was a spatial model [74]: the locations of all
farms were explicitly represented and the rate of transmission between two farms was

expressed as a function of the distance.

Models can be compartmental or individual-based. In individual-based models, the health
state of each individual is monitored over time, whereas compartmental models track the
infection process for the individuals of a same health state collectively [163]. Individual-
based models are often more computationally intensive but can also provide finer
information. When host characteristics (such as age, sex, gestation status, intensity of
contacts with the other individuals, etc.) are supposed to have an impact on the infection
dynamics and are variable between individuals, it is more appropriate to develop individual-

based approaches than compartmental models with many distinct compartments.

Concerning their time dependence, models can be in continuous time (the system could then
be described by differential equations) or in discrete time (difference equations could then
capture the dynamics). Differential equations provide a means for avoiding the issues
regarding the size of the time step by describing events occurring continuously, rather than
at discrete time intervals [163]. Indeed, in discrete time models, the choice of the time step
is crucial: if this latter is too large (i.e. fwo successive transitions between health states can
occur during a single time step), the model provides inaccurate and even non sense results.
The appropriate size of the time step depends on the modelled phenomena: it should
generally be less than the shortest average duration that individuals spend in a given health

state [163].

At last, to describe the infection dynamics on the long run, key aspects of demography of
the population considered (births, deaths, and migrations) may need to be incorporated in
the model. In the case of animal populations being managed by humans (e.g. pigs or cattle
herds), the representation of demography can be quite complex and sometimes require the

development of an elaborated population dynamics model [44, 94].
3. Confrontation of the model to data

A second step after the model elaboration consists in determining appropriate and plausible
values for model parameters. This can be done qualitatively based on information from the

literature or expert’s opinions. If data are available, model parameters can be quantitatively

32



Chapter 2 : Elaboration of the C. burnetii mode/ and estimation of its main parameters

assessed by fitting model predictions to data. However, sometimes this assessment is not
feasible from existing knowledge or data and new data sets need to be collected and
analysed using statistical methods. Although generic models can provide an intuitive
explanation of the fransmission of infectious diseases, it is only through detailed
parameterization and rigorous assignment of numerical values to parameters that useful

public health guidance can be generated [77].

When performing parameter inference from data different statistical techniques could be
used. A widely known approach is that of “least squares”. The sum of squares of the
difference between the model predictions and the observed data is calculated in order to
determine the parameter values which lead to the smallest value for this sum [163]. Another
well-defined and widely-applied approach when fitting a model to data is that of “"maximum
likelihood”: for a given set of parameters, the dynamics predicted by the model is
determined. Then, the likelihood (i.e. the probability) that the observed data come from such
dynamics is calculated. The best-fitting parameters are those which maximize this likelihood:

the model is in closest agreement with the available data [77].

Bayesian statistical inference is also a widely-applied approach to assess parameter
values. Although as for frequentist methods, the likelihood is still the key principle, there
is an important difference in the way it is used. For a frequentist, parameter estimation is
based solely on the likelihood while, for a Bayesian, it is based on both the likelihood and
the prior information [99]. The prior distribution of a parameter is the probability
distribution describing our initial knowledge about the parameter value. This distribution
is based on previous studies or expert knowledge. This concept is criticized by
frequentists as it introduces an element of subjectivity. In fact, estimated parameters
values are an intermediate between observations and prior distribution and problems can
occur when prior information is misleading and when one has a strong confidence in it [99].
The main difference is that frequentist statisticians consider model parameters as fixed
but unknown while Bayesians consider them as random variables [130]. Bayesian methods
often lead to more realistic estimated parameter values: a posterior distribution is
obtained for each parameter, distribution which represents the uncertainty about the
parameter, conditionally to data. Based on Bayes's theorem, the posterior distribution is

expressed as:
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Prior
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At this stage, it is impossible to determine the posterior distribution because the integral in
the denominator is most often very difficult to obtain. However, this integral can be
considered as a constant because it does not depend on the parameters 6. Markov chain
Monte Carlo (MCMC) methods are then used: they are a class of algorithms which allow
obtaining random draws from a probability distribution which is known up to a constant [123].
In our case, the prior distribution and the likelihood are known, so the numerator can be
expressed. The posterior distribution is then known excepted for the denominator constant.
Monte Carlo integration allows drawing samples from the target distribution and then
calculating sample averages to approximate expectation. MCMC methods allow drawing these
samples by appropriately constructing a Markov chain' that has the desired distribution as
its equilibrium distribution [53]. The state of the chain after a large number of steps is then
used as a sample from the desired distribution (i.e. the posterior distribution in our case).
There are many algorithms designed for constructing these chains, but all of them, including
the Gibbs sampler are special cases of the Metropolis-Hastings algorithm [53]. Several
issues arise when implementing MCMC. A problem is to determine how many steps are needed
to converge to the stationary distribution within an acceptable error. A good chain will have
rapid mixing (i.e. the stationary distribution is reached quickly starting from an arbitrary
position). The number of chains to be run, the starting values (to be chosen more carefully
for slowly mixing chains), the length of burn-in (i.e. the first part of the chain to be removed
in order to ‘forget’ the starting position) are also important technical adjustments to be

considered in practice.

When confronting an SIR-like epidemiological model to the data, likelihood-based estimation
of its parameters would be relatively easy to implement if the times of infection and removal
were observed for all cases [32]. In practice, the transmission process is rarely completely
observed (e.g. times of infection or removal are not observed for all individuals) and

reported quantities may be aggregated (e.g. weekly). In this context, when the calculation of

' A Markov chain is a random process with the property that the next state depends only on the
current state.
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the likelihood becomes intractable, data augmentation methods (i.e. which allow augmenting
the observed data with the missing information, for instance the times of infection or
removal) were extensively used. MCMC sampling is of particular interest since it allows
exploring the joint posterior distribution of parameters and augmented data. Although
limited by the size of the augmented data (due to the computation times which dramatically
increase with this size), MCMC approach is appropriate and efficient for small datasets (not

exceeding a few thousands).

II- The modelling of C. burnetii spread within a dairy
cattle herd

1. Description of the data set used for parameter

estimation (data set A)

The data were collected by Raphaél Guatteo during its PhD and described in details in one of
his papers [59]. R. Guatteo carried out a one-month longitudinal study in five French dairy
cattle herds infected with € burnetii, but without any clinical sign attributable to Q fever.
The selected herds were chosen to satisfy two major criteria: (i) the presence of the
bacterium € burnetiiwithin the herd; this was certified by a positive PCR result on bulk tank
milk and more than 20% of cows seropositive for C. burnetii, and (ii) the absence of any
control measure (i.e. antibiotics or vaccination directed against €. burnetii) before the end
of the study. To assess the dynamics of € burnetii infection, the lactating cows of these
herds were sampled from one to five times on a weekly basis (Figure 1.3). The cows entering
one of the herds during the study (as a consequence of a purchase or a first calving) were

also included.

The individual state of each sampled cow was determined at each sampling time using an
ELISA test (LSI ELISA Cox Ruminants®, Lissieu, France) on serum and a real-time PCR (LSI
Taqvet Coxiella burneti®, Lissieu, France) on three different samples (milk, faeces and
vaginal mucus). The results of the ELISA test were expressed by the ratio (S/P) between
optical densities of the sample and the positive control, and a cow was considered
seropositive when the S/P ratio in serum was greater than or equal to 0.4. For the PCR test,

only the samples presenting a typical amplification curve (demonstrating €. burnetii DNA
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detection) with a Ct (cycle threshold) below 40 were considered positive. A cow was

identified as PCR-positive when at least one of its three samples was PCR-positive.

At the initial point of the follow-up (day DO), the sizes of the five herds ranged from 24 to
79 lactating cows and a total of 217 cows were tested (Table 2.1). Thereafter, 100% of the
initially (at DO) PCR-positive cows, 100% (or 50% in herds with more than 40 lactating cows)
of the initially seropositive/PCR-negative cows, and 65% of the initially seronegative/PCR-
negative cows were retained for the follow-up. Thus, during the following month, between
55% and 79% of the cows of each herd were tested every week (at D7, D14, D21 and D28) in
the same way in order to determine their individual health state. According to the PCR
results and ELISA test, at DO, between 35% and 74% of cows per herd were identified as
PCR-negative/seronegative, between 1% and 23% were PCR-positive/seronegative, between
2% and 35% were PCR-positive/seropositive and between 17% and 37% were PCR-
negative/seropositive. At the end point of the follow-up (D28), the herds comprised between
24 and 81 lactating cows.

Cow
present I ! ! I
at DO | l | | Cow 2
- _. ________ ] I | v . Samplin
l | | 1 | (PCR on mil
mucus and faeces,
| | | | ELISA on serum)
| I | |
l Cow 3
______________ i ___I._---- IR PN B
Cow
entering | [ |
the herd 1 | 1
DO D7 D14 D21 D28

Figure 2.3. Sampling protocol during the one-month longitudinal study.
Cows present in the herd at time O of the follow-up were sampled either 5 times on a weekly basis
or only once at time O (DO). Cows entering into the herd during the follow-up were sampled every
week only the end of the follow-up (at D7, D14, D21 and D28).
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Altogether, 821 individual health states were determined, and respectively 145 complete (i.e.
with five sampling points per cow) and 89 incomplete (i.e. with one to four sampling points per
cow) temporal trajectories of individual health states were available. These data were here
used in the C. burnetii model to assess the main epidemic parameters by Bayesian inference.
In addition, the same dataset will be used to define and calibrate the representation in the
model of the individual variability in shedding routes and levels. This latter point will be
described in the section of the thesis dealing with the incorporation in the model of the

heterogeneity of shedding (section IT of Chapter 3).

Table 2.1. Numbers of animals according to the results of diagnostic tests (ELLISA and PCR). The
numbers are given for each of the five herds and each of the five sampling points.

Number of animals DO o7 D14 D21 D28
PCR negative 10 6 7 7 5
seronegative  PCR positive 2 1 0 0 1
Herd 1 PCR negative 7 4 6 6 7
seropositive PCR positive 5 6 4 4 4
not sampled 0 7 7 7 7
TOTAL 24 24 24 24 24
PCR negative 23 14 12 16 1
seronegative  PCR positive 2 2
Herd 2 PCR negative 18 4 9
seropositive PCR positive
not sampled 0 22 22 22 22
TOTAL 49 49 49 49 49
PCR negative 25 18 17 19 21
seronegative  PCR positive 2 1 3 2 0
Herd 3 PCR negative 6 5 4 5
seropositive PCR positive 1 1 1 1 0
not sampled 0 9 9 9 12
TOTAL 34 34 34 36 37
PCR negative 14 14 2 1 21
seronegative  PCR positive 7 4 16 10
Herd 4 PCR negative 4 4 10
seropositive PCR positive 6 4 0 3 2
not sampled 0 7 7 7 7
TOTAL 31 33 35 37 43
PCR negative 28 21 5 17 16
seronegative  PCR positive 1 2 10 3 2
Herd 5 PCR negative 27 18 33 15 14
seropositive PCR positive 23 12 4 15 19
not sampled 0 27 28 31 30
TOTAL 79 80 80 81 81
All herds TOTAL 217 220 222 227 234
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2. Description of the data used to define some of

the prior distributions (data set B)

Since the estimation was performed in a Bayesian framework (as justified in the next
section), we had to define the prior distribution of the health states in an infected dairy
cattle herd. To avoid the use of the same data set for both quantification of prior
distributions and inference and since additional data were available, we determined the
distribution of health states of 251 cows from six French infected dairy cattle herds
followed by R. Guatteo (in a different study from the one described in the previous section
[61]). The six herds exhibited repeated abortions due to C. burnetii confirmed by at least
one positive PCR result on vaginal mucus of cow after abortion but no control measure (i.e.
antibiotics or vaccination directed against . burnetii) had been implemented before the
sampling. The individual state of each cow was consistently determined in the same way as
previously described, using an ELISA test on serum and a real-time PCR on milk, faeces and
vaginal mucus samples. Table 2.2 shows for each of the six herds the repartition of the cows
with respect to their seropositive/seronegative and PCR positive/ PCR negative status. To
determine the prior distribution of the health states in an infected dairy cattle herd, we
took into account the mean proportions in each of the four categories (see section IIT of

this chapter).

Table 2.2. For each of the six herds, (i) repartition of cows function of their results to diagnostic
tests (ELISA and PCR), and (ii) total numbers of cows.

Criteria Herd 1 Herd2 Herd3 Herd4 Herd5 Herd 6 Mean
PCR - 20.9% 46.2% 27.5% 47 4% 50.0% 355% 37.9%
Proportion S€ro -
of PCR + 140% 17.9% 15.7% 8.8% 10.0% 3.2% 11.6%
COWS g + PCR - 512% 10.3% 275%  175% 200%  387%  275%
PCR + 140% 25.6% 29.4% 26.3% 20.0% 22.6% 23.0%
Total number of cows 43 39 51 57 30 31 251

3. Modelling assumptions

The aim of our study is fo understand the spread of C. burnetii infection within a dairy herd
by assessing the main epidemiological parameters from field data. Since we focused on one
population (here the herd), the unit of modelling that we considered was the animal. Based on

expert's opinion and observations in data set A, we opted for a modified version of the SIR
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model: 2 classes of I (I-, seronegative shedders versus I+ seropositive shedders) were
considered as important disease categories and represented in the model. Transitions in both
directions between S and I- and between I+ and R were assumed (Figure 2.4). As inhalation
of contaminated aerosols is the main route of infection for ruminants, we added a
compartment representing the environmental bacterial load and linked the probability of
infection (i.e. the probability of transition from S to I-) fo this compartment. As we focused
on a population of small size (around 50 cows), all the transitions between health states were
supposed stochastic. We chose a time step of a week because no transition could likely occur
in less than 7 days. Moreover, only an individual-based model with data at the individual level
would allow us to assess the model parameters. In fact, as transitions in both ways between
Sand I- and between I+ and R are allowed in the model, the number of animals in each health
state at each time point would be an insufficient information. Let us take an example with
two health states 4 and B. We denote by p(A=»B) and p(B=>A) the probabilities of transition
in each direction for an individual and NA(?) and NB(#) the total humber of individuals in each
state at time 7. Let is say that N4 and NB do not change between two adjacent time points,
but that 4 individuals moved in each direction. It is impossible to estimate p(4->8) and
p(B=>A) if the only information we have are N4 and NB. The inference has to be based on
individual trajectories: if we know that 4 individuals moved in each direction, it is perfectly
possible to estimate p(A->B) as k/NA and p(B->A) as k/NB. This reasoning led us to opt for
an individual-based approach which was possible to implement due to the fact that the data

we used consisted of individual trajectories (as described in section IT.1 of this chapter).

Then, the crucial step was to estimate model parameters from data set A. Several issues
were raised: first, the data was incomplete (i.e. some cows were not sampled at each
sampling point). Besides, diagnostic tests (and especially ELISA) were imperfect: the
individual health state observed in the data could then differ from the real health state of
the cow. Lastly, some model parameters were assumed to be herd-dependant. Therefore, we
had to deal with the missing data, the uncertainty due to the imperfection of diaghostic
tests, and the hierarchical structure of the process to estimate the model parameters. All
these arguments converged towards the choice of the Bayesian framework for parameter

inference.
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III- Manuscript: Spread of Q fever within dairy cattle
herds: key parameters inferred using a Bayesian
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1. Abstract

Q fever is a worldwide zoonosis caused by Coxiella burnetii. Although ruminants are
recognised as the most important source of human infection, no previous studies have
focused on assessing the characteristics of the bacterial spread within a cattle herd and no
epidemic model has been proposed in this context. We assess the key epidemiological
parameters from field data in a Bayesian framework that takes into account the available
knowledge, missing data and the uncertainty of the observation process due to the
imperfection of diagnostic tests. We propose an original individual-based Markovian model in
discrete time describing the evolution of the infection for each animal. Markov chain Monte
Carlo methodology is used to estimate parameters of interest from data consisting of
individual health states of 217 cows of five chronically infected dairy herds sampled weekly
over a four-week period. Outputs are the posterior distributions of the probabilities of
transition between health states and of the environmental bacterial load. Our findings show
that some herds are characterised by a very low infection risk while others have a mild
infection risk and a non-negligible intermittent shedding probability. Moreover, the antibody
status seems a key point in the bacterial spread (shedders with antibodies shed for a longer

period of time than shedders without antibodies). In addition to the biological insights, these

> We gratefully acknowledge the editors of the Proceedings B who gave us the permission to
reproduce  this  manuscript in our thesis. The paper is available online:
http://rspb.royalsocietypublishing.org/content/277/1695/2857 .abstract
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estimates also provide information for calibrating simulation models fo assess control

strategies for C burnetiiinfection.
2. Introduction

Q fever is a zoonotic disease caused by Coxiella burnetii, a bacterium found worldwide in a
wide range of animals. Since 2007, Q fever has become an important public health problem in
several parts of Europe [72, 108, 121, 141]. Although Q fever in humans is asymptomatic in
more than 60% of cases, it may lead to either an acute or a chronic disease [128]. The acute
disease is mainly flu-like but severe complications, such as pneumonia or hepatitis can occur.
In its chronic form, endocarditis is the most frequent manifestation, especially in patients
with pre-existing heart valve lesions. Abortion in pregnant women can also occur. Recently, a
large epidemic of Q fever emerged in the southern part of the Netherlands causing more
than 3000 human cases since 2007 [33]. A link has been established between some human
cases and farms of small ruminants where abortions due to Q fever were detected [141].
Ruminants are recognised as the main source of human infection [109, 118]. Infected animals
shed the bacterium through various routes such as parturition products, faeces, urine,
vaginal mucus or milk [15, 20, 57]. The transmission of infection both between ruminants and
between ruminants and humans is mainly due to inhalation of aerosolised bacteria or
contaminated dust [103]. The bacterium survives very well in the environment [167] and can
infect humans and animals for a long period affer it has been excreted by the host.
Therefore, the control of infection within ruminant herds is the most important factor
influencing the occurrence of human outbreaks. Besides these obvious implications in terms
of public health, controlling the spread of Q fever is also motivated by economic and animal
health concerns. Indeed, in ruminants, the infection may also cause abortions, infertility,

metritis or chronic mastitis [B, 20, 26, 125].

Previous studies of Q fever in ruminants have shown that some infected animals shed the
bacteria in a discontinuous way: this intermittent shedding has been described in the milk
and faeces of goats [11] as well as in the milk, faeces and vaginal mucus of cows [37, 59, 131].
However, little information is available on the characteristics of the spread of C. burnetii
within a cattle herd, a key point in the understanding and the control of the disease.
Specifically, the probability that a susceptible cow will become infected when introduced
info a chronically infected herd, the duration of shedding for an infectious cow, the
differences between the shedding patterns of seronegative and seropositive cows, the
probability of intermittent shedding and the duration of non-shedding periods are all key

parameters which have not been assessed. In order to address these issues, we propose an
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original modelling-based Bayesian approach to quantify the epidemiological parameters

related to the transmission of €. burnetii within a dairy cattle herd.

We have built a dynamic discrete time individual-based stochastic model describing the
evolution of health states with time for each animal. Due o the imperfection of diagnostic
tests (assessed by sensitivity (Se) and specificity (Sp) parameters), the observed health
state of a cow in our data can differ from its real health state. Thus, this uncertainty in
observations has to be explicitly incorporated in the model to provide more accurate
estimates of the parameters, particularly of the transition rates. We use the Bayesian
paradigm to deal with this uncertainty, the missing data (since for some animals the health
state was not identified at every moment in the follow-up) and to account for the
hierarchical structure of the process (e.g. some parameters are herd-dependent). Inference
is performed from field data (described in Guatteo et al. [57]) using Markov chain Monte
Carlo (MCMC) methodology [53], which is being increasingly used in epidemic modelling [31,
65, 88, 119, 145]. Posterior distributions of model parameters are analysed and biological

interpretations are proposed.
3. Data

A one-month longitudinal study was carried out in five French dairy cattle herds infected
with C burnetii, but without any clinical sign attributable to Q fever. The selected herds
were chosen to satisfy two major criteria: (i) the presence of the bacterium ¢ burnetii
within the herd; this was certified by a positive PCR result on bulk tank milk and more than
20% of cows seropositive for C burnetii, and (ii) the absence of any control measure (i.e.
antibiotics or vaccination directed against €. burnetii) before the end of the study. The
protocol of the study is described in detail in Guatteo et al. [57]. To assess the dynamics of
C. burnetii infection, the lactating cows of these herds were sampled from one to five times
on a weekly basis. The observed individual state of each cow was determined at each
sampling time using an ELISA test (LSI ELISA Cox Ruminants®, Lissieu, France) on serum
and a real-time PCR (LSI Taqvet Coxiella burneti®, Lissieu, France) on three different
samples (milk, faeces and vaginal mucus). The results of the ELISA test were expressed by
the ratio (S/P) between optical densities of the sample and the positive control, and a cow
was considered seropositive when the S/P ratio in serum was greater than or equal to 0.4.
For the PCR test, only the samples presenting a typical amplification curve (demonstrating C.
burnetii DNA detection) with a Ct (cycle threshold) below 40 were considered positive. A
cow was identified as PCR-positive when at least one of its three samples was PCR-positive.

At the initial point of the follow-up (10), the sizes of the five herds ranged from 24 to 79
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lactating cows and a total of 217 cows were tested (see Tables 2.4 and 2.5 of the
Supplementary Material). Thereafter, 100% of the initially (at t0) PCR-positive cows, 100%
(or 50% in herds with more than 40 lactating cows) of the initially seropositive/PCR-negative
cows, and 65% of the initially seronegative/PCR-negative cows were retained for the follow-
up. Thus, during the following month, between 55% and 79% of the cows of each herd were
tested every week (at t7, 114, t21 and t28) in the same way in order to defermine their
individual health state. The cows entering one of the herds during the study (as a
consequence of a purchase or a first calving) were also included. According to the PCR
results and the ELISA test, at 0 between 35% and 74% of cows per herd were identified as
PCR-negative/seronegative, between 1% and 23% were PCR-positive/seronegative, between
2% and 35% were PCR-positive/seropositive and between 17% and 37% were PCR-
negative/seropositive. At the end point of the follow-up (day 28 - 128), the herds comprised
between 24 and 81 lactating cows. Altogether, 821 individual health states were determined
and 235 (complete or incomplete) temporal trajectories of individual health status were

available.
4. Model and methods

Based on the available knowledge concerning the clinical and epidemiological aspects of Q
fever, an epidemic model describing its spread within a dairy cattle herd was built. Firstly,
the allowed transitions between the health states of the epidemiological model are
described. Then, the dynamic model representing the temporal evolution of observed
individual health states is presented. Finally, we detail the assumed priors and calculated
posterior distributions of the model parameters in the Bayesian framework (using MCMC

methods).
a. Epidemic model

Each individual of the population of lactating cows is in one of four mutually exclusive health
states at a given time, as shown in Figure 2.4. By inhaling bacteria contained in the
environment, a susceptible cow, S (non-shedder without antibodies), can become infectious,
I- (shedder without antibodies), and start shedding. Either it manages to eliminate the
bacterium and becomes S again (non-shedder without antibodies and then apparently
susceptible) or it produces antibodies and continues being infectious and shedding, I+
(shedder with antibodies). When it stops shedding, it becomes R (non-shedder with
antibodies). Since the shedding is intermittent [59, 131], a transition from R to I+ is

assumed. Antibodies can last several years in humans [47] and at least several months in
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cattle [125]. Here, we assume that the probability of observing a cow lose its antibodies over
the period of study (one month) is very low and negligible, especially in chronically infected
herds where immunity is probably steadily stimulated. Therefore, no transition from health
states with antibodies (I+ or R) to health states without antibodies (I- or S)is allowed in our
model. Shedders (I- and I+#) contribute to filling the environment compartment (£) with the
bacteria: ¢; and &€ are the quantities of bacteria shed during a time step (one week in our
case) by an individual I- and I+ respectively. The probability of infection or re-infection, p
(transition from S to I-) is expressed at each time step as p; = 1-exp(-£;), where £; is the
quantity of bacteria in the environment of the herd at time 7 (one unit of £;corresponding to
a probability of transition from S to I- of (1-1/e)). The mortality rate of C burnetiiin the
environment, u includes the natural mortality of the bacterium and its removal in relation to

the periodic cleaning of the cattle housing carried out by the farmer.

m S
::I q <::
E) € 5‘32 r
Environmental —y
bacterial load u

Figure 2.4. Flow diagram describing the modelled spread of . burnetiiwithin a cattle herd. The
health states are: S, non-shedder cow without antibodies, I-, shedder cow without any antibodies,
I+, shedder cow with antibodies and R, non-shedder cow with antibodies. £ represents the
environmental bacterial load. The model parameters are: p, the probability of infection or
reinfection (equal to 1-expt®), m, the probability of transition from I-to S, ¢, the probability of
transition from I- to I#, r, the probability of transition from I+ to R, s, the probability of
transition from R to I+, €;and ¢, the quantities of bacteria shed during a time step by an
individual I- and I+respectively and y, the mortality rate of C burnetiiin the environment.

b. Bayesian framework

We develop a dynamic discrete time individual-based stochastic model to represent the
temporal evolution of the observed health state of each cow. This is done in two main steps:
firstly, the temporal evolution of the real individual health state is modelled using Markovian
transitions and secondly, the uncertainty of the observations is incorporated using the Se

and Sp of the two diaghostic tests.
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Let /2}"/7)6 {5, I-, I*, R} be the real health state of individual / belonging to herd 4 (i €

{1,...N(h)} with N(h) the total number of cows in the herd A, A € {1,.. H} and A the humber of
herds) at time 7 (t € {0,.., T} with t28=T and t0=0). As illustrated by the graph in Figure 2.5,

for +>10, 'Qr(lh) depends on Rf(g, ,andon £, , the quantity of bacteria in the environment of

th’

herd A at time . The transition probabilities can be gathered in the matrix Q4

I=Prn Pra 0 0
m I-m-g ¢ 0 ") (")
Qp= 0 0 PR where &, , i« =P('Qr,h =Xk Rgp = x;) (31)
0 0 Sy ]—5'/7

for #=1...,T, i=1..,4and x;, xx € {x;= 5, X,=I-, X351+, X4;=R}.

The transition probability from Sto I-varies with time and herd since p, = 1-exp(-£;). This is
not the case for the other transition probabilities: m, ¢ and r are assumed constant. As s'is
related to the intermittency of shedding, possibly due to a stress specifically occurring in a
given herd (like an anti-parasitic treatment or a modification in herd management), this

parameter is considered herd-dependent.

The initial real health states, Ro(’z, are independent random variables with a probability

distribution specified by J, where J'XJ. = P(Ro(fz = XJ) for x; € (x;= 5, xo=I-, x3=I+, X4=R}.
The environment dynamics is expressed by the equation:

Epign=U-1)Esp+&1 Iy +€2 I, as it is dependent on the quantity of bacteria in the

environment and the prevalence of shedders (I, , I;',) at the previous time (Figure 2.5).

Since the beginning of the follow-up does not correspond to the infection onset, the initial

content of C burnetii in the environment of each herd, £, ,, is not zero and has to be

infroduced and then estimated.
The observation level accounts for the uncertainty of the observations 075’/3 and describes

their relationship with the real health states 'Qr(lh) using the matrix U:

SPpcrSPe/ (7-Spece)Sper (1~ Spoce Nt~ Spg)  Specel? - Spe)
| U -Sepp)spy SepcrSPe Sepcell - Spr)  (1- Sepcp Nl - 5pg)| (3.2)
|- Sepp)l - Seg)  Sepcall - Seg) SepcpSeg) (7 - Sepce)5eg
Spece\l - Segr) (1 - Sppce )l - Seg) (71— Spoce)Seg SPrcrSe
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where Uy = P(OY) = x| RY) = x;) | for #20.T, iz1.4 and x;, x € {x= S, x=I-, x5I+,

X4-_R}.

(o)
(o)
™~

Figure 2.5. Network describing the temporal evolution of individual health states of animals within
an infected dairy cattle herd. Rr(//? € {5, I-, I+, R} represents the real and non-observed health

state of individual /belonging to herd 4 (i € {1,..N(h)} with N(A) the total number of cows in the
herd A, A€ {1,..H} and H the number of herds) at time 7 (t € {0,..T)} with t28=T and 10=0). &; ,

describes the quantity of bacteria in the environment of the herd A at time 7. 075’,7) represents

the observed health state associated with Rf(’,g . Jn is the probability distribution of the initial

real health states and U is the matrix of the uncertainty parameters (Se and Sp of tests) linking
real and observed health states. Q, contains the parameters of transitions between real health
states in herd A except those characterising the S<->I- transitions. Qy is a 3x4 matrix
corresponding to the last three rows of matrix Qs , described in Equation (3.1).

We consider that the assumption of conditional independence between ELISA and PCR is
reasonable because the two tests have different bases: ELISA relies on the detection of
antibodies while PCR is a DNA-based technique to detect bacteria. Enoce et al. [41] made the
same assumption to assess the sensitivities and specificities of a nested PCR and a
microscopic examination of kidney imprints for the detection of Nucleospora salmonis in

rainbow trout. Elements of U are then defined as combinations of the specificities of the
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PCR and ELISA tests (Spec and Spg respectively) and their respective sensitivities (Sepce
and Se,_:,).

c. Bayesian inference: calculation of the posterior distribution
of the model parameters from likelihood and prior

distribution

In the Bayesian paradigm, the joint posterior distributions of model parameters can be

written as p(J,Q|0) < L(O|7,Q)* 2(7.Q), where L(O|7,Q)and (7,Q) are the likelihood
function and the joint prior distribution of model parameters respectively and

Q= UQ,’,, (see subsection 8. Supplementary Material for more details).
1

=1.T
h=1.5

Since the uncertainty parameters of the matrix U are fixed, they are not considered in the
joint prior density 7(J,Q). The Se of the ELISA test is set equal to 0.85 (according to a
recent estimation, Guatteo, pers. comm.)and the Sp is taken as equal to 0.95, while for the
real-time PCR, both Se and Sp are fixed at 0.95. As no published data on the test

characteristics are available, these values were chosen in accordance with expert opinion.

Available knowledge is incorporated into the model through prior distributions. Given that C
burnetii withstands hard environmental conditions [103], the median of its life expectancy
(1/4) on the farm in an infectious form is considered to be 4.5 weeks with a 95% credible
interval (CI) of 0.7-14 weeks. To determine the prior distribution of the initial real health
state J, we use independent data from six other French infected dairy cattle herds. On
average per herd 38% (min=20.9%, max=50%) of cows were observed to be in state S, 12%
(3.2%, 17.9%) in state I-, 27% (10.3%, 51.2%) in state I+ and 23% (14%, 29.4%) in state R
(Guatteo, pers. comm.). As the initial proportions of S, I-, I+ and R should sum to one (as
they represent a partition of the individual health states), an appropriate prior distribution
of the initial health state J is a Dirichlet distribution, D (3.5, 1, 2.5, 2). Its coefficients are
chosen to account for the observed proportions in the extra data (e.g. proportion of S is
3.5/9=38%, etc). Concerning the transition parameters (p, m, ¢, r and s), minimally
informative prior densities, reflecting the lack of information, are chosen. As these
parameters are assumed to lie between O and 1, Beta distributions are used for the
probabilities of transition from S to I- (p), I* to R (r) and R to I+ (s) health states. A
Dirichlet distribution is assumed for the probabilities of transition from I-to S (m)and I*
(g), respectively, since the sum of m, g and “the probability of staying in I-"is equal to 1. The

marginal distributions of m, g, and Beta distributions for r and s are rather flat. As C
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burnetii spreads moderately quickly in cows [8, 66], we use a Beta distribution with a median
of 0.33 and a 95% CI=[0.05-0.77] in order to penalise high values of p. As the environmental
bacterial load £ can be expressed with respect to the probability of infection p, the prior on
E'is deduced from the prior on p (median=0.4, 95% CI=[0.05-1.44]). Concerning the excretion
parameters & we faced a complete lack of information. However, as €is the quantity of
bacteria shed per week by a shedder cow, a plausible assumption is that =& +&, is lower than
the environmental bacterial load £ Hence, we use a truncated Normal distribution with a
median of 0.23 and 95% CI=[0-0.72] for both &and &. All these prior distributions are
detailed in Table 2.3.

Since posterior distributions are not analytically tractable, inference is based on
computationally intensive methodology: MCMC methods based on the Gibbs sampling
algorithm implemented in JAGS 1.0.3 are used. Bayesian MCMC allows datasets with missing
data to be fully modelled by sampling missing data points from the posterior distributions (in
Equation S1 of the Supplementary Material the matrix O is not entirely observed). Results
are analysed with R 2.8.1 [127] and R package coda [126].

d. Model adeguacy

In order to check the model adequacy for the data, a subsequent assessment is performed.
We simulate infection spread in five cattle herds with the same size, same initial
environmental content and same number of missing data as in the original dataset, using
parameters drawn from inferred posterior distributions. The missing pattern (i.e. missing
data during the follow-up are more frequent for PCR-negative cows at tO than for PCR-
positive ones) is not taken into account. The quantiles of the numbers of transitions between
observed health states in each herd for a time interval of one week are calculated and

compared with the data.
5. Results

Visual inspection of the chain pattern does not indicate non-convergence of the MCMC
algorithm (results not shown). Most of the parameters have a potential scale reduction
factor of the Gelman-Rubin diagnostic [51] close to one (<1.05). However, five of the 35
independent parameters monitored have values of potential scale reduction factors between
1.05 and 1.27. For these parameters, the results have to be interpreted with care (see Table
2.6 of the Supplementary Material for details). Median values and 95% CI of posterior
densities (represented in Figures 2.7 and 2.8 of subsection 8. Supplementary Material) of

inferred parameters are given in Table 2.3 and in subsection 8 (Table 2.7).
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Chapter 2 : Elaboration of the C. burnetii mode/ and estimation of its main parameters

a. Parameters of transition between health states

The spread of ¢ burnetii within a dairy cattle herd is mainly characterised by shedding
parameters and probabilities of fransition between health states, which are also
interpretable as sojourn times in these states (equal fo the inverse of fransition
parameters). For all these parameters, the posterior distributions cover shorter intervals
than those defined by the prior distributions, which reveals that the data provide
information. The probability of transition from the non-infection state S to the shedder
state I- (corresponding to the infection risk) seems moderate in some herds (for example in
herd 3 with a median p at time 1 of 0.073 and a 95% CI=[0.014-0.213]) but quite high in
others (for example in herd 4 with a median p at t0 of 0.466 and 95% CI=[0.272-0.660]).
Whereas the transition from the shedder state without antibodies, I-, to the non-infected
state S is relatively more rapid (median of m equal to 0.695 week, 95% CI=[0.542-0.844]),
the acquisition of antibodies in the infectious state (transition I- -»> I#) is rather rare
(median of ¢ equal to 0.017 week, 95% CI =[0.001-0.082]. Moreover, the duration in health
state I-is shorter than in I+: posterior distributions do not overlap and if we compare the
medians, the median duration in I- is more than three times shorter than that in I+ (1.4
versus 4.9 weeks respectively). The median time spent in state R before new shedding
(representing the intermittency of shedding) is less than 3.6 months in two of the five herds
(herds 4 and 5) but can potentially be longer in the other three (e.g. 26.6, 95% CI=[6.3-
159.9] in herd 1).

b. Environment-related parameters

Concerning the shedding parameters, as the posterior distributions of the quantities of
bacteria excreted by infectious cows without antibodies (&) and with antibodies (&) are
almost superimposed, we cannot determine if I- animals shed more than, at a similar level to,
or less than I+ animals. For all but herd 5, the posterior distributions of the environmental
bacterial load do not vary much with respect to time (Figure 2.8 of subsection 8). Therefore,
it is not possible to know how the environmental bacterial load evolves with time. For herd 5,
as the posterior distribution shifts to the right from 1O fo t28 it is possible that the
environmental bacterial load increases with time (at 10: median of 0.261, 95% CI=[0.045-
0.606], at t28: median of 0.558, 95% CI=[0.201-1.278]). Since at a given time posterior
distributions of £ widely overlap, we can not determine if environmental bacterial loads
differ between herds. For the parameter y, the posterior distributions are close to the prior
distribution regardless of the herd. It seems that the dataset does not contain sufficient

information to assess this parameter.
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Figure 2.6. Goodness-of-fit assessment. Boxplots summarise the posterior predictive distributions
of simulated numbers of weekly transitions between observed health states (S, I-, I+and R)in
each herd (H1 to H5) during the one-month follow-up. The quartiles are represented by horizontal
lines. The whiskers indicate maximum and minimum values of the simulated distributions that lie
less than 1.5 IQR lower or higher than the first or the third quartiles respectively. Simulated
values beyond the ends of the whiskers are indicated by a point. Dark filled-in circles represent
numbers of transitions between observed health states in our dataset.
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c. Checking of model adeguacy for the data

The goodness-of-fit is assessed in Figure 2.6. We verify the ability of the model to
reproduce observed summary statistics, defined as the total number of transitions per week
between observed individual health states for each herd, during a month, when parameters
are sampled from posterior densities. Sixty-three percent (expected 50%) of observed
summary statistics lie within the predicted 50% CI and 94% (expected 95%) of them belong

to the 95% CI of the simulated numbers of transitions.
6. Discussion

This study, based on a Bayesian modelling approach, provides the first quantitative
assessment of parameters describing the spread of C. burnetii within chronically infected
dairy herds. Previous studies that focused on Bayesian statistical inference of disease
parameters have already proposed discrete time stochastic epidemic models [88, 114].

However, our approach differs from these as it is individual-based.

The Bayesian framework enables the combination in the same model of previous knowledge
about C burnetii (mainly concerning the life expectancy of the bacteria in the environment
and the proportions of different health states within an infected herd) with information
coming from the present dataset. Moreover, it allows differences between herds to be
accounted for in a flexible manner through a hierarchical representation of the processes
involved. The convergence of the MCMC is not perfect, particularly for the initial real health
states. Although estimations of these parameters seem biologically consistent, our dataset is
probably not informative enough to provide good assessments of all inferred parameters.
However, for most of the parameters, convergence is achieved, the results are biologically
plausible and the goodness-of-fit is satisfactory overall. Nevertheless, the choice of
simulated missing data (that is, of cows with unknown health states for the t7-128 period)
was made randomly whereas in the field protocol, the selection of the weekly sampled cows
was nhot made at random. Moreover, a possible way to improve further the adequacy of the
model for the data is to consider that the uncertainty on the observed health states would
differ for each observation as a function of the quantitative results provided by the
diagnostic tests (S/P ratios for the ELISA and Ct values for the PCR). In fact, dichotomising
the test result of an ELISA can be unnecessary and, to some extent, counter-productive

[116]. The relevancy of this option could be explored in further studies.

As shown by the present results, some chronically infected herds (like herd 3) are

characterised by a low probability of infection and then a slow spread of the disease while
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others (like herd 4) are characterised by a quite high probability of infection and then a
faster infection dynamics. Also, intermittency of shedding is less likely to occur in some

herds (like herds 1 and 3) but seems usual in others (like herd 5).

When a cow becomes infected, clearance of the bacterium without seroconversion
(transitions from I- to S) is very common while the transition from the seronegative to the
seropositive state (I- -> I¥) is very rare, which means that very few cows of the analysed
dataset seroconverted over the month studied (which did not correspond to the beginning of
the infection). Moreover, in herds where the infection dynamics is faster, some cows are
restrained fo transitions between the non-infected state and shedding without antibodies
state (S <> I-), while others are restrained to transitions between the infectious
seropositive state and the non-shedding seropositive state (I+ <-> R). Thus, two categories of
animals seem to exist with two different types of infection response: a response with or
without any antibody production. Lastly, the antibody status seems to play a major role in the
involvement of a given cow in the bacterial spread: shedders with antibodies (I#) release

bacteria for a longer time than animals in the shedding state without antibodies.

Estimations of the environmental bacterial load are also provided. Although these values do
not have any obvious biological meaning, they are related to the infection/re-infection
probability of an animal within an infected herd. Our results do not show if the infection risk
varies with time but it is likely that some herds (like herd 5 and maybe herd 4 at the end of
the study) have quite high infection risks. As the present dataset does not contain enough
information to update significantly the prior distribution of the mortality rate of £ burnetii
(parameter ), we cannot claim that this potential high probability of infection is due to an
ineffective cleaning process of the cattle housing or is directly related to differences in the
prevalence of shedding cows. Further work is needed to provide relevant indicators of the
environmental contamination. The time scale of our study is probably insufficient to
investigate environmental content variations; a period longer than one month is likely

required.

The present data do not distinguish real susceptible individuals from non-shedding
seronegative ones: all are gathered in the unique category S. Thus, the estimated transition
rate from the non-shedding to the shedding without antibodies state is a mix between an
infection rate and a re-infection rate. These two rates are different as, in the latter, the
cell immunity should already have been activated. However, it is not possible with current

diagnostic tests to differentiate primary infected from re-infected animals. The relevance
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of cell immunity tests (i.e. skin tests) to study the immunity responses in chronically infected

herds would be a profitable area of research.

To conclude, this work provides the first quantitative estimation of key parameters from
field data based on an original modelling approach, enabling a better understanding of ¢
burnetii infection dynamics within chronically infected dairy herds. Besides the biological
insights provided by the estimated values of parameters, the outputs can be further used to
calibrate a simulation model representing the infection dynamics within a cattle herd over a
longer time scale and assessing the effectiveness of different control strategies for C

burnetii infection.
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8. Supplementary material

a. Data

A one-month longitudinal study was carried out in five French dairy cattle herds infected
with Coxiella burnetii. Table 2.4 provides the number of the individual health states of the
lactating cows of each herd at the beginning (10) and at the end (128) of the follow-up.

Table 2.4. Description of the five studied herds at 10 and 128 (aggregated data).

Cow status at 10 Cow status at 128
Herd

I I+ R Total ) I I+ R Unknown Total
1 10 2 5 7 24 5 1 4 7 7 24
2 23 2 6 18 49 11 5 5 6 22 49
3 25 2 1 6 34 21 0 0 4 12 37
4 14 7 4 6 31 21 7 6 2 7 43
5 28 1 27 23 79 16 2 14 19 30 81

Examples of individual trajectories for some cows of herd 2 are given below. See paragraph
4.a. of this section (‘Model and methods' - 'Epidemic model’) for the definition of the
different health states S, I-, I+ and R.
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Table 2.5. Evolution of observed individual health states over time for some cows of the data set.

Cow number 10 17 t14 121 128
214 ) S S S I-
218 S S S S S
220 I+ I+ R I+ I+
222 R I+ R R R
224 R R R R R
233 I+ I+ I+ I+ I+
234 R I+ R R R
235 S S S S S
239 I- I- S S S
240 I+ I+ I+ I+ I+

b. Likelihood

From Equations (3.1) and (3.2) of the main text and considering that all variables are
categorically distributed (i.e. they follow a multinomial distribution with the parameter n

fixed at 1), the likelihood function of the complete data is given by:

T

T
L(Ol‘f/ Q) = H ) Z ) JR(/') H UO(/')R(/') H QR(/')R(/') ’ (51)

h=1.. H Rl i 0.h =0 thth F=1 t.h t-1.h
i=1,  Np)\ OH T A

where random variables are assimilated to their realisations when used as indexes for

reasons of simplicity (e.g. =P(OY) = x4| RY) = x;) = Usioge = Vi)

U n .
AR )

c. Convergence of the MCMC algorithm

Three chains were run: an initial burn-in of 10,000 runs with a thin interval of 600 was
performed. Then, 50,000 iterations with the same thin interval were run. This thin interval
ensures that the chains are no longer autocorrelated. All the 50,000 iterations were used to
assess the posterior distributions. A total of 60 parameters were monitored: 25 for £, the
environmental bacterial load at every sampling time in each herd, 20 for J,, the distribution
of the initial real health states in each herd, five for u, the herd-dependent mortality rate of
C. burnetii, five for s, the herd-dependent transition rate for R to I+ and one for &, €, m, ¢
and r, the shedding and transition parameters. Among these 60 parameters, 35 are
independent: 15 for J,, five for 4, five for s, five for p at time 1 of the follow-up and one for

&, &,m, gand r.

Moreover, Table 2.6 provides the Gelman-Rubin convergence diagnostic (or the potential scale

reduction factor) for these 35 parameters.
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The JAGS code used to make Bayesian inference is available on request from A. Courcoul

(aurelie.courcoul@oniris-nantes.fr).

Table 2.6. Median and 97.5% percentile of the Gelman-Rubin potential scale reduction factors
(PSRF) for the 35 independent parameters of the model. The multivariate PSRF is equal to 1.51.

97.5% 97.5%
Parameter Median  percentile Parameter Median  percentile
PSRF of the PSRF of the
PSRF PSRF
ps transition rate S5=> I- 1 4 mortality rate of the
time O, herd 1 1.03 1.03 bacterium, herd 4 100 Lot
pz transition rate S5=> I- 1 5 mortality rate of the
time 0, herd 2 101 102 bacterium, herd 5 101 102
ps transition rate S=> I- J1 7 proportion of Sas initial
time O, herd 3 1.00 1ot real health state, herd 1 110 1.31
p4 transition rate S5=> I- Jz 7 proportion of Sas initial
time O, herd 4 1.00 1ot real health state, herd 2 105 L7
ps transition rate S=> I- J3 7 proportion of Sas initial
time 0, herd 101 1.02 real health state, herd 3 101 1.03
) " _ J4 7 proportion of Sas initial
m: transition rate I-=> S 101 1.02 real health state, herd 4 1.00 101
" _ J5 7 proportion of Sas initial
¢ transition rate I-=> I+ 1.00 101 real health state, herd 5 1.27 174
- _ J1 2 proportion of I-as initial
r. transition rate I+=> R 1.01 1.02 real health state, herd 1 1.00 1.00
) " _ Jz 2 proportion of I-as initial
s; transition rate R=> I+ - herd 1 1.04 1.13 real health state, herd 2 1.00 1.00
. " o Js 2 proportion of I-as initial
s transition rate R=> I+ - herd 2 1.08 1.23 real health state, herd 3 1.02 1.08
) " _ J4 7 proportion of I-as initial
s3 transition rate R=> I+ - herd 3 1.00 1.02 real health state, herd 4 1.00 101
) " _ J52 proportion of I-as initial
s4 transition rate R=> I+ - herd 4 101 1.03 real health state, herd 5 1.02 1.08
. " o J1.5 proportion of I*as initial
s5 transition rate R=> I'+- herd 5 114 142 real health state, herd 1 1.00 1.00
&7 quantity of bacteria shed by an J2 3 proportion of I+as initial
1.01 1. ’ 1. 1.
I- per week 0 03 real health state, herd 2 00 00
€ 7 quantity of bacteria shed by an 108 124 J3 .5 proportion of I+as initial 103 110
I+ per week real health state, herd 3
4z mortality rate of the J4 5 proportion of I+as initial
bacterium, herd 1 1.03 110 real health state, herd 4 1.00 1ot
M 2 mortality rate of the J5 3 proportion of I+as initial
bacterium, herd 2 104 113 real health state, herd 5 101 103
M 3 mortality rate of the 100 1,00

bacterium, herd 3
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d. Posterior and prior distributions of transition and shedding

parameters

Figure 2.7 provides the prior and posterior distributions of four of the five transition rates

between health states (p, m, ¢, r and s) and of the two shedding parameters & and &, As p,

the transition rate from S to I- (which represents the infection risk) and s, the fransition

rate from R to I+ (which represents the intermittent shedding) are assumed to be herd-

specific, five posterior distributions (one per herd) are given for these two parameters. For

all these parameters, the posterior distributions cover shorter intervals than those defined

by the prior distributions, which reveals that the data provide some information.

Probability density
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Quantity of bacteria shed by /- and I+ (per week)

Figure 2.7. Prior (dotted black line) and posterior (solid lines) distributions of the model transition
parameters: transition rate from Sto I-(p), transition rate from I-to S (/m), transition rate from
I-to I+ (g), transition rate from I*to R (r), transition rate from R to I+(s), quantity of bacteria
shed by an I- individual in a week () and quantity of bacteria shed by an I* individual in a week

(e2).
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e. Posteriors and priors of the environment

Figure 2.8 provides the posterior distributions for the environmental bacterial load (£) for
each herd at each time and for u, the mortality rate of the bacterium (which comprises the
natural mortality of the bacterium and its removal in relation to the periodic cleaning of the
cattle housing carried out by the farmer). For the initial environmental bacterial load and for

M, priors are also given.

Z @ — Herd 1 > N — Herd 1
2 . Herd 2 2w Herd 2
3 — Herd 3 8 4 — Herd 3
2 =+ - ——Herd 4 2z —— Herd 4
5 —Herd 5 3 T —Herd 3
C ™ ERETE
< s [S
o= T T T e =y T T T
oo 05 1.0 15 oo 05 1.0 15
Environmental bacterial load — time 0 Environmental bacterial load — 1 week later
> — Herd 1 > — Herd 1
G Herg z 2 m :ergg
Q | — Herd 3 ) _ — Her
; © —— Herd 4 g “ —Herd 4
£ % —Herd 5 z 7 —Herd 3
T~y T -y ]
3 8
a = T T T o =T T T T
oo ns 1.0 15 oo ns 1.0 15
Environmental bacterial load - 2 weeks later Environmental bacterial load - 3 weeks later
> — — Herd 1 2 W = Herd 1
2 o Herd 2 % _— Hzrd 2
3w — Herd 3 © w4 = Herd 3
2> —— Herd 4 = — Hzrd 4
3 T —Herd 5 5 ™A —Herd 5
8 S = o
ne_ = == 6: = =
T T T T T T T T T T
0o ns 1.0 15 oo 0z 0.4 06 0 1.0
Environmental bacterial load - 4 weeks later Mortality rate of the bacterium (per week)

Figure 2.8. Posteriors of the environmental bacterial load (E) and of the mortality rate of the
bacterium (). For the initial environmental bacterial load and for y, priors are also drawn (black
dotted line). For the initial environmental bacterial load, posterior distributions cover shorter
intervals than those defined by prior distributions, which reveals that the data provide some
information. This is not the case for .
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f. Summary statistics for the initial real health states
At the prior level, the initial real health states, 'Qo(//i , are random variables with a probability

distribution specified by J, where JXJ. = P(Ro("/)7 = xj) with x; € {x;= 5, xo=I-, x5=I+, x,=R}.

Table 2.7 provides summary statistics of posterior distributions for marginal probability

distributions of initial real health state.

Table 2.7. Priors and posteriors for the probability of initial real health states (J) in each of the
five herds. For the marginal prior and posterior distributions, medians and 95% credible intervals
(CT) are shown.

Posterior median and 95% CI

Model parameter Prior distribution
Herd 1 Herd2 Herd3 Herd4 Herdb
0.380 0.327 0.439 0.688 0.524 0.306
Probability that the initial health )
O s (0120-  (0159- (0.300- (0533- (0.359- (0.205-
0.706) 0.521) 0.581) 0.818) 0.685) 0.425)
0.082 0.062 0.031 0.032 0.189 0.015
Probability that the initial health )
roea lsl,r;;e oaf co; :r:ls ?_ e (0.003 - (0.004 - (0.001- (0.001- (0.071- (0.000 -
Dirichlet 0.369) 0.194) 0.109) 0.134) 0.347) 0.064)
. L (35,1,25,2) 0.261 0.237 0.140 0.079 0.143 0.336
Probability that the initial health
rona ls:zre ;c covj :r:; ; e (0.054 - (0.107 - (0.060- (0.020- (0.059- (0.233-
0.593) 0.410) 0.256) 0.189) 0.265) 0.449)
- . 0.203 0.351 0.377 0.183 0.129 0.333
Probability that the initial health :
ls‘rZTe of cow 7is R (0.031 - (0.184 - (0.243 - (0.082- (0.048- (0.219-
0.528) 0.549) 0523) 0.323) 0.252) 0.456)
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Chapter 3: Representation of the heterogeneity of shedding and identification of the most
influential parameters

In the first section of this chapter, we will briefly describe how different population
heterogeneities affect infection dynamics in many diseases, which are the implications for
control purposes and how modelling accounts for these heterogeneities. In the second
section, the variability of the shedding routes, duration and levels observed in data set A
will be detailed. Then, some generalities will be provided on the approaches allowing
identification of the most influential parameters of an infection dynamics. These key
parameters are indeed of major importance: once identified, they have to be accurately
assessed to improve both the model prediction and the understanding of processes
involved in the infection spread; also, interventions impacting them are of great interest.
The last section will describe our model of within herd spread of £ burnetii (with the
representation of the individual variability of the shedding routes, duration and levels) and
the sensitivity analysis performed. This part will be presented as it was submitted to

Journal of Theoretical Biology.

I- Why and how to represent heterogeneity in host

population?

When modelling the spread of an infection in a population, average quantities (e.g. average
duration of infectiousness, average number of contacts with congenerics, average quantity
of pathogen shed, etc.) are most of the time used as parameter values. This generic
representation is acceptable as a first approach for providing a global view of the
transmission process. However, populations are heterogeneous and individuals can have
different physiological or behavioural characteristics, which are worthy to be taken into
account. As an example, Diekmann & Heesterbeek [36] assume that in a population, the
infectivity differs between individuals. Once epidemic growth takes off, all the values of
infectivity are represented among the many infectious individuals and it is acceptable to
work with the mean value of infectivity when describing the infection dynamics. However,
it is not the case during the very first stages of infection where the values of infectivity

of the few infected individuals have a great impact on the evolution of infection.
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1. Two classic examples of heterogeneity in human
diseases: sexually transmitted infections and

childhood diseases

Host heterogeneity is well described in Sexually Transmitted Infections (STIs), for which
high and low-risk individuals can be defined depending on their humber of sexual contacts.
By having many sexual partners, high-risk individuals have a higher risk of both contracting
and transmitting the disease than low-risk ones. Therefore, models representing the
spread of an STI should include several classes of individuals, and are more complex than
models with assumed homogeneous host population [77]. One of the key parameters for
direct-transmitted infections is the transmission rate, often denoted by B, defined as the
rate per unit of time at which a susceptible, S and an infectious, I, individuals come into
effective contact (i.e. a contact which leads to a new infection). This parameter can be
seen as the product of the rate of contact between the two individuals and the probability
that this contact will induce a new infection. In a standard SIS model where the population
is assumed globally homogeneous (see chapter 2 section I for more details on different
model structures), there is only one parameter B, whereas in an SIS model with two
classes of individuals (high-risk and low-risk groups), there are four distinct A
transmission rate from high-risk individuals to high-risk ones, from high-risk to low-risk,
from low-risk to high-risk, and from low-risk to low-risk. Thus, in an SIS model with two
classes of individuals, there are more equations and parameters than in a standard SIS
model. However, incorporating such heterogeneity in the model has several advantages: the
infection prevalence can be determined for each of the different classes and used to
define more efficient targeted control measures [163]. Besides, the basic reproduction
ratio Ry from structured models is generally larger than if the structures were ignored

and all individuals had the same transmission rates [77].

Other well studied infections requiring partitioning of the host population are childhood
diseases, such as measles or mumps. In this case, the distinction between classes is based
on age rather than on the number of contacts with congenerics. Such diseases are common

in childhood but rare for adults: indeed, in addition to an increased susceptibility, the

® The basic reproduction ratio (or basic reproductive number) is the expected number of
secondary cases that a single infected individual will cause when introduced into a ndive
population (i.e. a population with no immunity to the disease) and in the absence of control
measures. When R, < 1, the infection will die out in the long run. When R, > 1, the infection will
be able to spread in the population [36].
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individuals who mix most with children (i.e. especially other children), are at the greatest
risk [77]. In these models, the population is subdivided intfo a number of discrete
compartments, classified depending on hosts' age and individuals progress through

increasingly older age classes.

This type of models can also be used for animal diseases. As an example, Ferguson et al.
[46] used an age-structured model when describing the spread of the prion responsible for
the Bovine Spongiform Encephalopathy (BSE) through the cattle farms of the United
Kingdom. Their model included many sources of heterogeneity: each cow was indexed by
two variables, age and time-since-infection, on which fransmission rates and susceptibility
were dependent. Following the inclusion of this double dependence, the model became very
complex. However, given the economic and public health importance of the BSE epidemic, it

was crucial to achieve a high degree of accuracy [77].

2. Superspreading events occur in many infectious

diseases

Large variations in infectiousness have been described for many infectious diseases, and
especially for the Severe Acute Respiratory Syndrome (SARS). In the Singapore epidemic,
of the first 201 probable cases reported, 103 were infected by just five source cases
[89]. These individuals that directly infect a large number of other people are called
superspreaders. The definition is here not age-related and the infectiousness® and
susceptibility® of superspreaders seem not correlated, contrary to those of individuals
infected by STIs. Lipsitch et al. [89] showed that the presence of superspreaders, and
then the large variation in the effective reproduction number & had a great influence on
the early course of the epidemic: the variability in the effective reproduction number R
means that many infected individuals transmit few or not at all while some transmit a lot.

The probability that a single infected individual will result in a large epidemic is therefore

* The infectiousness of an individual describes its ability to transmit the infection o other
hosts.

> The susceptibility of an individual describes its ability to get the infection from other hosts.

® The effective reproductive number R is the number of secondary cases generated by a single
infected case once the epidemic is underway (i.e. the population is not fully susceptible). In the
absence of control measures, R = Ryx, where x is the proportion of the population susceptible.
During the course of an epidemic, R declines because of the depletion of susceptibles in the
population and the implementation of specific control measures. To stop an outbreak, R must be
maintained below 1 [89].
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lessened compared to the case where the value of R is the same on average but presents

less variation. However, if the epidemic occurs, it can be very explosive.

The superspreading, although a key point in the 2003 SARS epidemic, was seldom
represented in models until recently [48]. The 20/80 rule [169], which suggests that
roughly 20% of the most infectious individuals are responsible for 80% of transmission,
has been applied mainly to helminthic and sexually transmitting infections but not to other
directly tfransmitted diseases. In 2005, Lloyd-Smith et al. [91] reassessed heterogeneous
infectiousness. They considered that the infectiousness was distributed continuously in
any population and that distinct homogeneous risk groups could not be defined a priori. In
their model, the expected number of secondary cases caused by a particular infected
individual (parameter equivalent to the R of Lipsitch et al. [89]) was drawn from a
continuous probability distribution with population mean R, and superspreading events
corresponded to realizations from the right-end tail of this distribution. Using contact
tracing data from eight directly transmitted diseases, they showed high variation in
individual infectiousness for most of the data sets. Model predictions accounting for this
heterogeneity differed from average-based approaches, with disease extinctions more
likely and outbreaks rarer but more explosive in the former case. Besides, control efforts

targeting highly infectious individuals outperformed population-wide measures.

In a similar way, Matthews et al. [105] showed that British cattle infected by Escherichia
coli O157 was characterised by a high variability in bacterial shedding concentrations and
consequently in infectiousness: a model assuming that all farms and all animals are
governed by the same underlying dynamics was unable to explain the highly overdispersed
distribution of prevalences of Escherichia coli O157 shedding on Scottish farms [106]. The
best fit to the prevalence data was obtained when incorporating variability in transmission
rates at the animal level. This variability was both within host (i.e. variability over time for
the same animal) and between hosts. In fact, 20% of the variance in bacterial counts could
be attributable to host-to-host variation. Besides, the authors showed that 20% of the
infections with the higher mean infectiousness contributed around 80% of the
transmission. Effective control strategies would then consist of (i) targeting the super
shedders (i.e. the most infectious individuals): preventing infection in 5% of the individuals
with the highest mean infectiousness would bring R, below 1; and (ii) targeting bacterial
carriage at high concentrations: limiting the bacterial load at 10* cfu/g (count
corresponding to the top 6% of observed counts) would produce 48% of reduction in

transmission, which would decrease R, below 1.
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A different way to take into account superspreading was proposed by James et al. [69],
through an event-oriented approach in which every individual had the potential of
extensive spreading. Superspreading events (SSEs) were seen as stochastic consequences
of environmental variability. James et al. [69] compared their model with the model of
Lloyd-Smith et al. [91]: for most of the data sets, there was little difference in the Akaike
information criterion’, which illustrated that none of these models was clearly favoured
over the other. The implications for control proposed by both groups of authors were
different. For James et al. [69], as infections caused by non-SSEs could be relatively
insignificant, targeted control policies based on reducing the frequency or severity of
SSEs had fo be implemented. The frequency of large gatherings of people or animals could
be decreased by reducing the duration of working/school week or the frequency of animal
markets. Moreover, to reduce the severity of SSEs, the maximum number of people (or
animals) gathering together should be reduced. As these control measures did not require
indentifying superspreaders, they were easier to implement than those proposed by Lloyd-
Smith et al. [91] (i.e. targeting highly infectious individuals). However, the 'reality’ of
superspreading should lay somewhere between the event-oriented and individual-oriented
approaches and modelling, both individual heterogeneity and rare SSEs being important
challenges for the future [69]. It has to be highlighted that both models agreed about the
consequences of superspreading phenomena: they cause less frequent but more explosive
outbreaks. Garske et al. [50] also draw those conclusions when studying the impact of
superspreading on patterns of disease outbreaks. Besides, these authors showed that
outbreak sizes distributions were a less and less adapted guide to estimate R, of an
infection as heterogeneity increases. Further studies on the extent and consequences of

heterogeneity in infectiousness are then required.

We have just shown that identifying superspreaders would be useful [48]. However, such a
task is very difficult to achieve in practice. As summarized by Lloyd-Smith et al.
(Supplementary information of [91]), hosts, pathogens and environmental factors all
confribute fo variation of infectiousness. Contact rates are a key point: superspreaders
are often noted to have high numbers of occupational or social contacts, or an activity that
facilitates pathogen dispersion, such as food handling. Evolution of highly-transmissible

pathogen strains is also possible although little studied. Besides, crowded or confined

7 Akaike's information criterion is a measure of the goodness of fit of an estimated statistical
model. The AIC is not a test of the model in the sense of hypothesis testing; rather it is a test
between models - a tool for model selection. Given a data set, several competing models may be
ranked according to their AIC, with the one having the lowest AIC being the best.
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settings, as well as the delay before an infectious patient is isolated, have a strong
influence on individual infectiousness. Lastly, host-pathogen interactions affect
transmission rates via variation in symptom severity and in pathogen load or shedding.
Identifying factors such as age, genetic, diet or other management factors that might

lead to high levels of shedding would then be of great interest [105].

II- The heterogeneity of shedding in C. burnetii

infections

In cattle herds infected by € burnetii, shedding routes are often not concomitant and the
titres in C. burnetii are highly variable between shedders. In addition, some cows, mostly
highly-seropositive, shed in milk with a persistent shedding pattern [59]. Based on this
knowledge, our model was rendered more realistic by representing this special type of
shedders (called I+ ™ #%) and the shedding routes and levels for each shedder type (I-,
I+ and I+ ™* Per5) The partitioning of the population into these different categories was
made on a probabilistic basis and the values of the discrete probability distributions

controlling it were based on observations from data set A presented in Chapter 1.

This section provides some details on the observed distributions of shedding routes and
levels for I-, I+ and I+ ™* P cows in order to (i) highlight, if any, differences between
those three types of shedders and (ii) feed the mathematical model. Besides, as the
uterus and mammary glands of females are sites of chronic €. burnetii infection [107], a
second objective was to determine if the calving had an impact on these distributions.
Therefore, we separately analysed the data regarding the cows which calved in the month

before the sampling and the data of those which calved more than a month before.
1. Shedding routes

According to our data set, seven shedding route categories were defined: shedding in (i)
milk only ("Milk"), (ii) vaginal mucus only ("Muc"), (iii) faeces only ("F"), (iv) milk and mucus
("Milk+Muc"), (v) milk and faeces ("Milk+F"), (vi) mucus and faeces (“Muc+F"), (vii) milk,

mucus, and faeces (“all routes").

The variability in the shedding routes was noticed both within cow (i.e. over time for a

given cow) and between cows. Over 47 I- and I+ cows observed shedders twice one week
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apart, only 53.2% were allocated at the 2" time of shedding to the same shedding route
category as the 1¥' time. Almost half of them were shedders in milk only; the other half
were shedders is mucus only. Only one cow was observed shedding in milk and mucus twice

one week apart.

As shown in Figure 3.1, there is a significant difference between the shedding route
distributions of I- and I+ individuals, for cows which calved more than a month before
(Fisher test, p-value < 0.001): I- cows mostly shed in mucus only (43% of cases) and milk
only (34% of cases) whereas I+animals shed preferentially in milk only (61% of cases). For
cows which calved in the month before the sampling, there is no significant difference

between I-and I+ cows.

100%
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Figure 3.1. Distribution of the shedding routes with respect to the type of I cow.
In black: I- (11 samples for the recently calved cows, 97 for the other ones); in grey: I+ (14
samples for the recently calved cows, 151 for the other ones);in hatched: I+ ™*7e5(8 samples
for the recently calved cows, 82 for the other ones)

For both I+ and I+ ™ P individuals, there is a significant difference between the

shedding route distributions of cows which calved more than a month before and cows
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which calved in the month before the sampling (Fisher tests, p-value < 0.001): cows which
recently calved, shed less often in milk only. There is no significant difference between

these two types of cows for I-individuals.

Thus, based on the analysis of our data, we chose for the I+ and I+ ™* 7 gnimals
different probability distributions for cows which calved more than a month before the
sampling and for cows which calved in the month before the sampling. Therefore, we used
five different probability distributions in the model for the shedding routes (see Table 3.1

milk pers

of section IV): one for the I- cows, two for the I+ cows, and two for the I+ cows.

2. Shedding levels

In the real-time PCR, the quantification is relative and based on the Ct (cycle threshold) of
an endogenous internal positive control, the GAPDH. Since for the faeces samples, there
are not enough cells, an exogenous positive control is used and no quantification is
performed. Therefore, only shedding levels in milk samples and vaginal swabs are

presented.

Like for the shedding routes, the observed variability in the shedder levels is both within
and between individuals. However, the former is less frequent: over 33 cows shedding
through the same route twice one week apart, 69.7% shed the 2™ time in the same

shedding level category as the 1*" time.

The distributions of the shedding levels for the different types of I are presented Figure
3.2. Most of the I-individuals shed at low titres, whatever the shedding route and moment
of calving. For the I+ individuals which calved more than a month before, the shedding level
distribution in milk samples significantly differs (i) from the one in mucus samples for the
same kind of cows, and (ii) from the one in milk samples for cows which calved in the
previous month (Fisher tests, p-value < 0.001). There is no significant difference between
the shedding level distributions in milk and mucus samples for recently calved cows,
whatever the type of I Most of I+ ™ 7%’ individuals shed in mid titres except recently
calved cows shedding in mucus (Fisher test, p-value < 0.001). These latter more often shed

in low titres.

According to the descriptive statistics analysis of our dataset, five different probability
distributions for the shedding levels were considered in the model (see Table 4.1 in section
IV): as the probability distributions for all the I- and for the I* mucus shedders which

calved more than a month before did not differ significantly, the same probability
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distribution Q7 was used for these types of animals. Different probability distributions
Q2 and Q3 were respectively defined for the I+ milk shedders which calved more than a
month before, and for the I+ cows which calved in the previous month whatever their
shedding route. Lastly, we used a probability distribution Q4 for the I+ ™* Prs mucus
shedders which calved more than a month ago and a probability distribution Q5 for all the
I+ ™ pers pmilk shedders which calved more than a month ago and for the I+ ™* Pers which

calved in the previous month.
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III- Why and how to perform a sensitivity analysis?

When building a model, the modeller has often several possibilities of model structures to
answer his questions. It is then crucial to understand the impact of specific
parameterizations on the outputs. Concerning model parameters, two situations may
schematically occur: either many different values or no quantitative information are
available in the literature or from expert opinions. Although ideally this uncertainty could
be reduced by collecting more data, this is not always possible in practice. I+ seems then
essential to investigate the way uncertainties of different orders propagate on the

outputs variables [30], especially if the model aims at advising policy makers.

These two aspects can be explored through sensitivity and uncertainty analysis. Sensitivity
analysis “is the study of how the variation in the output model can be apportioned,
qualitatively or quantitatively, to different sources of variation, and of how the given
model depends upon the information fed into it" [140]. It allows ordering by importance
the strength and relevance of the inputs when studying the variation in the output. The
uncertainty analysis quantifies the uncertainty in the outcome of a model. In other words,
sensitivity analysis determines the relationships between information flowing in and out of
a model. And in this sense it should be distinguished from the uncertainty analysis which
quantifies the variability of the output due to the incomplete knowledge of the system but
does not link this variability to the variability of the different inputs.

1. Aims of sensitivity analyses

Sensitivity analysis has a wide range of goals [140]. First, it allows determining if the
model has the expected behaviour. If the model is strongly dependant on a priori non
influential factors® or, conversely, if the variation of a priori highly influential factors has
no impact on the model outputs, there is a need to revise the model structure or
parameter values. Sensitivity analysis also allows to define the most important factors,
which, if fixed to their most likely value, would lead to the greatest reduction in the
variance of the output [30]. This is called factors prioritization setting and helps prioritize
research needs in terms, for instance, of data acquisition. Besides, sensitivity analysis can

be useful to simplify the model: the non influential factors can be either eliminated from

8 “Factor" is defined as any input included in the sensitivity analysis. It can be a parameter, an
input variable, or a module of the model [140].
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the model or fixed to any value of their domains without significantly increasing the output
variability. This latter point is called factors fixing setting. At last, sensitivity analysis
allows determining the region of the space of inputs factors with the largest model

variation and to detect interactions between factors.
2. How to perform sensitivity analysis?

The first step is to determine which input factors will be considered for the analysis. This
choice depends on the question in study and on the available knowledge on the modelled
system. Then, for each input factor, the range of variation and either the factor levels
(i.e. the possible factor values within the variation range) or the factor probability
distribution should be defined. The third step consists of generating factor combinations
which will be used as inputs when running the model. This step is a crucial one and many
methods (not detailed here) are available to design experiments. For example, if the
factors are defined through probability distributions, the selection of samples from these
distributions can be made randomly or by Latin Hypercube sampling’. When factors are
defined by discrete levels, complete or fractional factorial designs can be used. The
fourth step is to run the model and then to determine the value of the output of interest
for each combination of input factors. At last, the influence or relative importance of each
input factor on the output variable has to be assessed. Different methods are available

and the choice is not easy as each technique has its strengths and weaknesses.
3. Types of methods"

When the model is computationally expensive or has a large number of input factors,
screening methods are useful. They allow identifying the factors that control most of the
output variability but are only qualitative: the input factors are ranked by order of

importance but the methods do not quantify the relative difference between factors.

® The range of each input factor is divided into A intervals of equal marginal probability /N,
and for each input factor one point is generated in each interval. There are then N non-
overlapping realizations for each of the input factors [140].

"% A full factorial experiment is an experiment whose design consists of two or more factors,
each with discrete possible values or "levels", and whose experimental units take on all possible
combinations of these levels across all such factors. If the number of combinations in a full
factorial design is too high to be logistically feasible, a fractional factorial design may be done.
In this case some of the possible combinations are omitted, according to specific rules
established to render feasible the estimation of desired effects (main effect, second order
interactions, etc.)

1 The description of the following methods is based on Cariboni et al. [30] and Saltelli et al.
[140].
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Typical screening designs are one-at-a-time (OAT) experiments: the effect of the
variation of a single factor is estimated keeping all the others fixed at their estimated
values. This type of method does not allow estimating factor interactions as only one
factor varies at each time. An exception is the OAT design proposed by Morris: the
experiment covers the entire space over which the factors may vary, whereas in standard
OAT experiments, the factors vary only around their nominal values (Figure 3.3). For each

factor /7 at the given point x of the sampling space is calculated an elementary effect

oYX X X+ A X g, Xy ) — Y (X)
A

defined as d;(x) with y the output and x=(x;,

Xz, ... X¢) a selected point in the sampling space. The mean of the elementary effects of a
given factor measures its overall effect on the output while the standard deviation

accounts for interactions.

Morris QAT
ﬁ—-o [ [ o - g
o2
= &4 ] 8
™ [-] o L ] - -l o oo o0 OO OO
] &5 o
3 & o &~ o
::.- 1-] @ o - = E
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Figure 3.3. Space sampling in grid for Morris OAT and in cross for standard OAT;
bl and b2 are two inputs factors.

Local analysis is a quantitative method which usually consists of calculating partial
derivatives of the output functions with respect to the input factors. This method takes
into account only small variations around the factor nominal values and is usable only for

linear models.

Global approaches allow assessing the effect of an input factor on the output variation
when all the other input factors are varying. They are suitable for non linear and/or non
additive models and allow measuring the sensitivity over the entire range of each input
parameter. The output variance can be decomposed in order fo impute to each input factor

its contribution. Different techniques exist: a factorial decomposition of the model
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variance by an analysis of variance (ANOVA), Sobol's decomposition, and Fourier Amplitude
Sensitivity Test (FAST). The two latter are widely-used even computationally costly. They
allow quantifying V;, the amount of output variance explained by each input factor i/

Sensitivity indices S, representing the main effect of factor / can then be defined as the

ratio %(y)' with ¥) the output variance. When interactions are also considered, a

total effect index ST;can be calculated to account for all the contributions to the output
variation due to factor /(its main effect plus all its interactions). The ANOVA also allows
calculating sensitivity indices but with this method, the sensitivity analysis is based on an
approximation of the model by a simpler linear model [113]. As an example with two input

factors Z; and Z,, the response variability can be decomposed as follows:

-~ 2
2 2 2
Z(Yab—/z) = mZa'a +mz,ﬁb +Z7’a,b .
ab ) \ a ’ \ b ] \ a,b |
SSt total SS, SS, SSo,
variability in the

model responses SS1and SS;: Sl..lm of S512: sum Qf
squares associated squares associated
respectively with with the interaction
the main effect of between Z; and Z>
Z] and Zz

%b denotes the model response when z;=aand z,= b, u= </:. is the general mean, m is
the number of possible values for a and b, a, =Y —u is called the main effect of

factor Z; when z;= a et ,Bb = \’/\.b — 4 is the main effect of factor Z,whenz;=band 7,,

is the interaction related effect. The main effects sensitivity indices are therefore

. 55 . . g el 55
defined as 5 _ 551 and S, =="2, the interaction sensitivity indices are S,, = —22
55 55, 55,
55, +55
and the total sensitivity indices are TS, =—* %2 and Ts, _ 592+ 5%z
55, 55

Although sensitivity analyses are widely-used for deterministic models, adaptations of
these methods for stochastic models are still in progress and no consensus on the steps to
be followed is currently available. One of the possible approaches is to consider as outputs
the mean and standard deviation of the output of interest over the repetitions of the
model. Besides, all the previously described methods are well-defined for non dynamical
outputs. However, in epidemiological models, it seems useful to identify the factors most
influencing the entire dynamics of infection. Global sensitivity analysis could be applied

separately on each time point of each output, but successive dates enclose relative
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redundant information and also interesting features of the dynamic may be missed out. In
order to jointly consider all the points of time series in the sensitivity analysis, Lamboni et
al. [82, 84] developed a hew method based on principal component analysis and on analysis
of variance. A generalized sensitivity index is computed for each model parameter. The
proposed index synthesizes the influence of the parameter on the whole time series
output. As described in the following section, this is the approach we adopted for the
sensitivity analysis of the model of heterogeneity of shedding in C. burnetii spread in a

herd that we developed.
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1. Abstract

Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis.
Ruminants, especially cattle, are recognized as the most important source of human
infections. Although a great heterogeneity between shedder cows has been described, no
previous studies have determined which features such as shedding route and duration or
the quantity of bacteria shed have the strongest impact on the environmental
contamination and thus on the zoonotic risk. Our objective was to build a model
representing the spread of C. burnetii within a dairy cattle herd, taking into account the
heterogeneity of shedding and to identify key parameters whose variation highly

influences the infection dynamics.

We proposed an individual-based stochastic model in discrete time describing the evolution
of the infection representing both the individual variability of the shedding duration,
routes and intensity as well as herd demography. To compare the influence of the
epidemiological parameters on different temporal outputs, we performed a sensitivity
analysis consisting of a Principal Component Analysis followed by ah ANOVA. Our findings

showed that the most influential parameters were the probability distribution governing
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the levels of shedding, especially in vaginal mucus or faeces, the characteristics of the
bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching
the environment), and some physiological parameters related to the intermittency of
shedding (transition probability from a non shedding infected state to a shedding state) or
to the transition from one type of shedder to another one (transition probability from a

seronegative shedding state to a seropositive shedding state).

Our study seemed crucial for the understanding of the infection dynamics. As control
measures should impact the parameters influencing the infection dynamics most, our model
can now be used to assess the effectiveness of different control strategies for C burnetir

infection within dairy cattle herds.
2. Introduction

Q fever is a worldwide zoonosis caused by Coxiella burnetii. This intracellular bacterium
infects a wide range of animals and is associated with reproductive disorders in domestic
ruminants [5, 20, 26, 98]. Goats, sheep and cattle are recognized as the main source of
human infection [96, 109, 142, 164]. Infected animals shed bacteria through various routes
(parturition products, faeces, urine, vaginal mucus, milk) [10, 20, 57]. As the bacterium
survives very well in the environment, humans can get infected by inhaling contaminated
dusts or aerosols. This was recently experienced in the Netherlands where more than
3,000 cases were reported since 2007 [159]. Although Q fever is asymptomatic in humans
in more than 60% of cases, it can lead to acute or chronic infections and cause flu-like
syndrome, hepatitis, pneumonia, endocarditis or abortions [52, 128]. Hence, for public
health and economic and animal health concerns, it is important to control C burnetii

infections in livestock herds.

In C burnetiiinfections, a great heterogeneity between shedders has been described [15,
37, 131]: the shedding duration and routes, as well as the level of shedding (i.e. the
quantities of bacteria shed) are variable between cows. According to Guatteo et al. [59],
cows can shed sporadically or persistently, the shedding routes are rarely concomitant and
the concentrations of bacteria shed in vaginal mucus or milk can vary from less than 100
Bacteria/g to more than 1,000,000 B/g. Heterogeneity of shedding is known to affect
infection dynamics in many diseases [104] but it is generally difficult to determine which
of its aspects are the most influential. The length of shedding, its route, the quantity of
bacteria shed, or other features may all have the strongest impact on the environment

contamination by C. burnetiiand thus on the zoonotic risk in the case of Q fever infection.
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A representation of the disease spread within a herd as well as the identification of key
parameters characterizing the heterogeneity of shedding are thus critical for the
understanding of the infection dynamics. In addition, the effectiveness of a control
measure was shown to be dramatically improved by targeting the individuals transmitting
the pathogen most (e.g. in the case of Escherichia coli 0157 infection [105], of measles
epidemics [50] or of Sa/monella transmission [86]). However, understanding and predicting
the spread of £ burnetiiin a herd or identifying such key parameters cannot be assessed
by field experiments alone. In this context, mathematical models are useful tools for
understanding how the infection spreads within the herd and how various inputs (such as
epidemiological characteristics of infected animals) affect the dynamics [97]. Techniques
such as sensitivity analysis allow assessing the impact of the uncertainty and variability in
the parameters on models outputs and hence determining key factors [140]. It consists in
studying how the variation in the outputs of the model can be apportioned to different

sources of variation, and how the model depends upon the information fed into it.

The aim of our study is first to build a model representing the spread of €. burnetii within
a dairy cattle herd, taking into account the heterogeneity of shedding and second to
determine the key parameters related to this heterogeneity whose variation highly
influences the infection dynamics. The model that we will present is, to our knowledge, the
first one proposed in the literature for Q fever spread coupling epidemiological aspects
(mainly heterogeneity in shedding) with herd demography. The sensitivity analysis that will
be described, followed by the presentation and the discussion of the results, is an original

approach allowing dealing with temporal outputs.
3. Mode/

a. General description

The epidemic model that we developed describes the spread of C. burnetii within a dairy
cattle herd, considering different health statuses, which are defined by excretion of
bacteria, immunity and various characteristics related to the shedding route and the
quantity of bacteria delivered in the environment (Figure. 3.4 and Table 3.1 for the
parameter description). The herd demography is included through interaction of lactation
and gestation statuses with shedding. The model is stochastic, individual-based and in
discrete time with a time step of one week, which is appropriate for both epidemiological
and herd management processes. The stochasticity has two main sources: for each

individual, all the transitions between health states are supposed stochastic and the
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quantities of bacteria shed in the environment follow discrete distributions, different

according to the shedding route.

v Health states and their associated transitions

Each cow is in one of the six mutually exclusive health states at a given time (Figure. 3.4):
S (susceptible, non-shedder without antibodies), I- (shedder without antibodies), I+
(shedder with antibodies), I' ™* 7" (shedder with antibodies, shedding in milk at higher
levels and for a longer period of time than I*, as described by Guatteo et al. [59]), ¢+ (non-
shedder with antibodies), ¢- (non-shedder without antibodies which was infected and had
antibodies in the past). All shedding cows I are subdivided according to their shedding

routes: (1) I, milk only, (2) I, vaginal mucus and/or faeces, (3) I3, both.

I+ mllk pers [;-miikpm milk only

itk pers milk+mucus/
3

feces
— milk enly r?
h

S <m: I I m;lcusf q*plp f?’ milk only
- D aces
>
P

N

<—

milk+mucus/ 1= mucus/ _r>
1
P

2 feces

- feces
=
q'(1'P|P) milk+mucus/

feces

I3

Environment

with p = 1- exp(-&

Figure 3.4. Flow diagram describing the modelled spread of C. burnetiiwithin a cattle herd. The
health states are: S, susceptible, non-shedder cow without antibodies, I-, shedder cow without
any antibodies, I+ shedder cow with antibodies, I+™Mkpers gshedder cow with antibodies shedding
in milk in a persistent way, C*, non-shedder cow with antibodies and ¢-, hon-shedder cow without
antibodies which was infected and had antibodies in the past. I- and I+ cows are in the shedding
route category I if they shed in milk only, 2if they shed in vaginal mucus/faeces only and 3 if
they shed in milk and vaginal mucus/faeces. I+™7°’ cows are in the shedding category 7if they
shed in milk only and 3 if they shed in milk and vaginal mucus/faeces. £ represents the
environmental bacterial load. The model parameters are presented in Table 3.1. ¢, e2and €3 are
the quantities of bacteria shed during a time step by an individual I-, I+ and I#"%#ers
respectively and contaminating the environment. These quantities are the sum of all quantities
of bacteria shed by all the shedders through all the shedding routes @7y, times p the fraction
of bacteria shed reaching the environment of the herd.
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As shown in Figure 3.4 and matrix M, below, by inhaling bacteria contained in the

environment, a susceptible cow, S, can become infectious, I-, with probability p (expressed
at each time step as 7 - exp(‘Ef) where £; is the quantity of bacteria in the environment

of the herd at time 7). Either it manages to eliminate the bacterium and becomes
(apparently) S again (transition probability m) or it produces antibodies and continues

milk pers

shedding (transition probability ¢). It can then become I+or I+ with rate pIp. When
it stops shedding, it becomes C+ (transition probabilities r; and r; respectively). Since the
shedding can be intermittent as observed in experimental and field studies [59, 131], a
transition from C+ to I+ is assumed (transition probability s). A ¢+ individual can also clear
the infection, loose its antibodies and become C- (fransition probability 7). If this
individual is infected again, its humoral immunity is assumed to be immediately reactivated

and it becomes I+ again (without passing through the I-state) with the same probability as

an individual in state S.

v Heterogeneity of shedding

Both shedding routes and levels of shedding are taken into account in our model. We
assume that the probability distribution corresponding to the assignment to one of the
three categories of shedding routes defined above is different for each infectious state
I-, I+ or I+™*Pers (probability distributions denoted by o, B and y). As the quantification of
C. burnetii is not available in the faeces samples, the distribution of the associated titers
of bacteria is assumed to be similar to the distribution of the titers in the mucus samples.
Besides, we assume that shedding in vaginal mucus or in faeces have the same impact in
terms of contamination of the environment (same p equal to p™, p being the fraction of
bacteria shed reaching the environment of the herd). Therefore, these two excretion
routes are gathered into a single category. Concerning the shedding levels, three
categories are represented: low, moderate and high level shedding, corresponding
respectively to a quantity of bacteria Qty of 1/3000, 1/30 and 1 unit of environment. The
probability to shed at one of these levels (represented by the probability distributions @,
described in Table 3.1) depends on the infectious state (I-, I+ or I+ ™* %) and on the
shedding route (milk or mucus/faeces). Both the distributions @ and the ratios between

the Q7ywere determined based on field data (R. Guatteo 2009, pers. comm.).

The quantity of bacteria arriving into the environment during a time step represents the
sum of Q7y times p for all the shedders releasing bacteria through all the shedding routes.

This last parameter is assumed to be lower for shedding in milk, p™*, than for shedding in
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mucus/faeces, p™ (i.e. a lower proportion of the bacteria shed in milk is supposed to arrive
into the environment of the herd, because most of the milk is directly sent to the bulk,

and then to the dairy industry). It has to be stressed here that animals in the third
category (I3, IF and I;™* P respectively) are assumed fo contribute through two

simultaneous shedding routes to the filling up of the environment, namely milk and
mucus/feces.

v Infection dynamics
The temporal dynamics of the individual health states is modelled using Markovian
transitions. Let RUE(S, I, Iy, Iy, If , If, If I ™kpers | prmikpers ¢y ) be
the health state of individual /at time #. A’,(") depends on R,(Q, and on £, , the quantity of

bacteria in the environment at time 7. The transition probabilities can be contained in the

matrix My=(m; j):

Pro; pa; Prxs 0 o 4 4 4 0
(I-m-q)a; (I-m-q)a, (I-m-q)as; g(I-pIp)p; 9(I-pIp)B, g(I-pIp)Bs qgpIpy, 9gplpys O
(I-m-q)a; (I-m-q)a, (I-m-q)as; q(I1-pIp)p; q(I-pIp)B, g(I-pIp)Bs qpIpy, gplpys O
(I-m-q)a; (I-m-q)a, (I-m-q)as; ¢(I-pIp)p, 9(I-pIp)B, g(I-pIp)Bs qgplpy, 9gplpys O

o o 0 (I-r)p; (I-r)B; (I-r)pBs o 0 7
0 0 0 (I-r)p; (I-r)p2 (I-r1)ps 0 0 r
0 0 0 (I-r)p; (I-r)p2 (I-r)ps 0 0 r
o o 0 o 0 o I=-r)y T-r)ys 12
0 0 0 0 0 0 U-r)y, =-r)y; s
0 0 o sB; 5B, B 0 0 I-s
o o 0 PPy pB2 P83 o 0 0

where m = P(R,(") = x| Rf(i} =x;) for t=1.. Tmax, kj=1.11, {x;= 5, x=I; , x5I7,
xp=I3, x5=If, x5=I3, x=I3 Xxg= I]J"""/kp”s, ngIgm’ykpers, X10=C*, x;=C-}. The
probabilities of categorical distributions &,  and yverify the conditions o+ az*ar3 = 1,
Brt Bz# 3= 1and v+ y5= 1.

As the environmental bacterial load at time 7, £, is dependent on £ and the prevalences of

shedders (Ij;, I3, 34, Ify, I3y, I3, I MPers pimikpersy qr  time -1, the

environment dynamics can be expressed by the equation:

Erog = -wE+] kafy/ Z”r,/jk/ , where /€ {I-, I+, I+ "7}, j € {< 4 weeks post
k./ i

calving, > 4 weeks post calving}, & € {milk, mucus/faces}, / € {low, medium, high},
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mitk _ _mf . ~ i . .
pMK = pMF * patio and P ikt /MU/f/ﬂ(er/‘.jk'Qc(/.ljlk)). N represent numbers of animals in

corresponding health states at fime 7 and Q) are the probability distributions

/J.k
governing shedding levels, which are not necessary distinct for each state (for instance, as

explained above, based on field data, we assumed that

QC(I =& )-

~ >4 weeks post calving, mucus / faeces) = QC(I * >4 weeks post calving, mucus/ faeces)

v" Herd demography

The epidemic model is coupled with a model of herd demography. Only cows (neither heifer
nor calf) are represented in our model. No lactating cow is purchased by the farmer. Thus,
only S primiparous cows which have just calved (former heifers becoming lactating cows)
are assumed to enter the herd. These introductions of animals can occur at any time of the
year. However, if at time #, the size of the herd is above 1.15 times the initial size, we

assume that no heifer is introduced at this time.

The culling rate depends on the lactation number. The culling of animals can occur at any
time of the year. However, if at time 7, the size of the herd is below 0.85 times the initial

size, it is assumed that no cow is culled at this time.

For each cow, we represent the lactation/gestation cycle. We consider a calving-calving
interval of 55 weeks. The lactation cycle is composed of 47 weeks of lactation starting at
calving followed by 8 weeks of dry period. The gestation cycle is composed of a non

gestation period of 15 weeks starting at calving followed by a gestation of 40 weeks.

Table 3.2. Description of the parameters of the herd demography model and their standard

values.
Description Standard
value

Replacement rate (year™) 0.355
lactation 1 0.0057
lactation 2 0.0052

Culling rate (week™) lactation 3 0.0065
lactation 4 0.0067
lactations 5&6 0.0161
lactation 1 0.337
lactation 2 0.252

Probability distribution at time O lactation 3 0.173

for the lactation numbers of the )

cows lactation 4 0.11
lactation 5 0.088
lactation 6 0.04
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v Interactions between epidemiological processes and herd demography

milk pers milk pers

Dry cows can not become I+ and a I# cow becoming dry can stay either in

I]+ milk pers or in I3+ milk pers but she is assumed not to shed any bacteria into the

environment through milk. A dry cow becoming or staying I- or I*is necessarily in sub
category 2 (shedding in vaginal mucus and/or faeces). As shown in Table 3.1, the date of
calving also impacts the probability distributions (&, f, yand Q) of shedding sub

milk pers

categories for I+and I+ cows.

Regarding the abortions, cows in gestation can abort during the 3 weeks following infection
or resumption of shedding (which can occur during a transition from S to I-, from ¢+ to I+
or from C- to I+). Abortions can occur at any time of the gestation. It is assumed that a
cow can abort only once in her life. If a cow aborts in the first or second third of
gestation, she sheds at that moment a moderate quantity of bacteria in the mucus/faeces
shedding route, whereas if the abortion occurs in the last third of gestation (late
abortion), she sheds a high quantity of bacteria in the same shedding route. In addition, if
a cow aborts in the first or second third of gestation, the non gestation period is reduced
to 8 weeks (instead of 15 weeks after a normal calving or a late abortion). If a cow aborts
after the week 22 of gestation, it starts a new lactation. If she aborts before, her
current lactation continues for a maximum of 50 weeks of lactation. Afterwards, she is

dried off.

At last, from mid-March to mid-November, we assume that cows in lactation and dry cows
are not kept all together. Therefore, two types of environment are defined: £,y is the
environmental bacterial load of the main buildings and close pastures for lactating cows,
while £, is the environmental bacterial load of the specific pastures of dry cows. The
probability of infection is thus different for lactating and dry cows during this period
(Pouiding and  ps, respectively). Outside this period, there is only one compartment
environment in which all the cows (lactating and dry) shed their bacteria. This environment

is Ebui/d/hg-

b. Initial conditions and parameter values of the standard

scenario

At =0, the herd consists of 50 cows. To initiate the infection cycle, a primiparous I+ cow

which has just calved is introduced into a wholly susceptible herd.
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The epidemiological parameters are put at their standard values (Table 3.1): parameters m,
g, ri, s and u come from a study where they were estimated through Bayesian inference
using data from five French chronically infected dairy cattle herds [35]; probability
distributions of shedding related parameters, ¢ ,3, ,Bcalv, ¥ Yean, QI Q2, Q3, Q4 and @5,
were qualitatively calibrated to match field data (R. Guatteo 2009, personal
communication). The parameters governing the demography and herd management (Table

3.2) were chosen to represent a standard French dairy cattle herd.

To account for the variability in Q fever infections, 200 repetitions of the same scenario

were run over a b-year simulation period.
4. Sensitivity analysis

a. Outputs and factors

We conducted a sensitivity analysis to identify the parameters that mostly contributed to
the output variability. Various scenarios were run, each of them being characterized by a
specific combination of parameter values, in order to relate the variability obtained for
the outputs to that induced by the input parameters. Eight outputs were considered (Table
3.3): (7) Esuirding. (ii) Eur, (ifi) the prevalence of milk shedders, (iv) the prevalence of
mucus/faeces shedders, (v) the prevalence of shedders in milk in a persistent way, (vi) the
seroprevalence, (vii) the number of abortions per herd per year, and (viii) the extinction
rate. All these outputs except the number of abortions and the extinction rate were

computed weekly over a 5-year period.

Parameters related to the herd demography were fixed at their nominal values of Table
3.2 since demography and herd management processes are considered as well known. The
sensitivity of the model outputs was evaluated with respect to the epidemiological
parameters, which are those given in Table 3.1, except for 7. These 19 parameters are thus
the inputs of the sensitivity analysis and they will be called factors in the rest of the
paper. They belong to two categories: parameters concerning the transitions between
health states and the environment (m, g, pIp, r;, rz, s, 1) and parameters directly related

to the heterogeneity in shedding (i.e. &, B, Lo, 7, Vearw RL, Q2, Q3, Q4, Q5, o™ and ratio

milk
[p /mfj). The parameters in the first category were estimated from field data
p

previously [24], but some uncertainty still remains (due for instance to the limitation of

the data). They were included in the sensitivity analysis but with relatively limited ranges
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of variation. In this study we focused on the latter category of parameters because they

directly describe heterogeneity related aspects, which represented our main objective.

Table 3.3. Description of the outputs of the sensitivity analysis.

Output name Description
Environmental bacterial load of the main buildings and close
Ebui/d/hg
pastures
E Environmental bacterial load of the specific pastures for the dry
dry
cows

Proportion of animals of the herd shedding in milk, i.e.

Ij +I7+ I]+ + I; + I]+ milk pers + I; milk pers )
N

Prevalence of milk
shedders

Proportion of animals of the herd shedding in vaginal mucus and/or

Prevalence of ;
I ;fm/k pers

Ip+Iz3+I5+I5+

mucus/faeces shedders faeces, ie. N *)
Prevalence of shedders in s ]+m//k pers . I;m//k pers

N N U er: N *x
milk in a persistent way Proportion of animals I" ™" 7¢% ie, N ™)

Proportion of animals with antibodies, i.e.

Seroprevalence IreIrtsIrt+ct+1f milk pers LI milk pers
P 174243 1 3 *)
N

Number of abortions per
herd per year

Proportion of runs of a particular scenario leading fo an extinction

Extinction rate of the infection (**)

* Ndenotes the herd size
** the infection is assumed extinct when there is no ITand ¢ left until the end of the simulation time

b. Design of experiments

All the designs were generated using R 2.10.1 [127] and PLANOR R package [27].

v First experiment

We used a fractional factorial experiment design, with four parameter values (called
levels) per factor related to the shedding and two levels for the other parameters (values
in Table 3.1). As our model is stochastic, we ran the model for each combination of factor
levels 30 times. Since the complete factorial design would lead to too many combinations
(exactly 30 x 4" x 27 simulations), a fractional factorial design of resolution V was chosen.
Such a design allows estimating the main effects and two-factor interactions, provided
higher order interactions are assumed to be negligible [18, 80]. In the present case, a
design was obtained with 4,096 scenarios. Thus, we ran 122,880 realizations of the model

(i.e. 30 repetitions for each of the 4,096 scenarios).
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v Second experiment

A complete factorial design for the eight most influential factors according to the first
experiment was performed. This enabled us to more accurately quantify the impact of the
interactions between these eight factors and also to disentangle potential confounded
main effects and interactions. Besides, we determined in this experiment the factors that
mostly contributed to the variability of the extinction rate between repetitions. The
remaining 11 parameters were put to their standard value (Table 3.1). For this second

study, we ran 2,048 scenarios with 30 repetitions each.

v Third experiment

In a third analysis, the influence of factors Q was specifically explored. Since the
probability distributions @ depend on the type and route of shedding, this analysis enabled
us to explore which type of shedders (I-, I+ or I+™*#°%) and which type of shedding route
(milk or mucus/faeces) played a major role in the variability of the outputs. Thus, the
probability distributions of the shedding levels were varied independently, which
generated 10 factors. Probability distributions Q* were recorded as follows: for milk and
mucus/faces respectively, Q/* and Q2* refer to the distributions of the shedding levels
for the I-, Q3* and Q4* refer to those for the I+ after 4 weeks post-calving, @5* and
Q6% are similar to the two former but correspond to the 4 first weeks post-calving, Q@7*
and Q8* refer to the distributions of the shedding levels for the I+ ™7 after 4 weeks
post-calving, and finally Q@9* and Q70* are the symmetric of Q7% and Q8* for the 4 first
weeks post-calving. Thus, former factor Q7 of first and second experiments corresponds
to new factors Q7*, Q2* and Q4*, former factor Q2 to Q3*, former factor Q3 to Q5*
and Q6% former factor Q4 to Q8*and former factor Q@5 to Q7% Q9*and Q10*,

A fractional factorial design for the 10 new factors Q* with four levels each was
generated. These four levels were (0.85, 0.15, 0), (0.6, 0.4, 0), (0.25, 0.25, 0.5) and (0.15,
0.6, 0.25) for the probability to be in (low, mid, high) shedding level respectively. The
other parameters were put to their standard values given in Table 3.1. For this third

experiment, we ran 1,024 scenarios with 30 repetitions each.

¢. Analysis of the temporal outputs (of the first, second and

third experiments)

In order to compare the influence of factors on the seven outputs which exhibit femporal

dynamics (all outputs except the extinction rate), we applied a method developed by
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Lamboni et al. [82] and used by Lurette et al. [95] to identify key parameters influencing
Salmonella infection dynamics in a pig batch. The results are recorded as tables with one
row for each scenario and one column for each output time points (260 weekly time points

for the first six outputs and five annual time points for the abortion number).

This method allows simultaneously analyzing potentially correlated variables (here the
successive time points of a given output). It consists in two main steps. First, a Principal
Component Analysis (PCA) is operated in order to provide linear combinations (or
components) of the initial variables (here the columns of our tables) explaining the
maximum of inertia (i.e. variability) between scenarios. Only the first three principal
components (PC) were kept since they are sufficient to cover most variability amongst
simulations. The PCA provides to each line of the tables a score on each component. The
second step involves an ANOVA, including the main effects and the two-factor
interactions for all factors and carried out on the scores of each of the components
considered. Sensitivity indices (SI), corresponding to the main effect or to interactions,
and total sensitivities (TS), corresponding to the sum of the main effect and the
interactions, were calculated for each factor and for each component. This analysis was

performed with R 2.10.1 [127] and multisensi R package [83].

The analyses were performed on both the mean and standard deviation of the 30
repetitions of each scenario, in order to assess the two sources of variability influencing
the outputs: the model intrinsic stochasticity and the parameter variability generated by

the factorial designs.
d. Analysis of the extinction rate (of the second experiment)

An ANOVA was performed to assess the influence of the eight most influential factors on
the extinction rate. It was calculated for each scenario defined by the complete factorial

design of the second experiment.

e. Analysis of the outputs at a the time point 260 (of the

first, second and third experiments)

In order to determine the factors with the highest influence on the output variability as a
whole, we performed a joint analysis on the values of the six dynamic outputs (first six
lines of Table 3.3) at the last simulation time step (week 260). This time point was chosen
to illustrate the long-term steady-state of the system. Thus, the two-step analysis (PCA

followed by ANOVA) was performed twice on six output variables. The first analysis was

92



Chapter 3: Representation of the heterogeneity of shedding and identification of the most
influential parameters

done on the mean and the second on the standard deviation of the 6 dynamic outputs at

time 260.
5. Results

a. Infection dynamics of the standard scenario

Over the 200 repetitions of the standard scenario, 37 led to the extinction of infection
(defined as the absence of animals in I or C states in the herd) occurring on average in
week 56 after the introduction of the initial infected cow (min: week 11, max: week 171).
The mean seroprevalence and the mean prevalences of shedders increased with time
(Figure 3.5) fo reach respectively 34.7% on average [0 - 57.1% for the percentiles 2.5%
and 97.5% respectively] and 35.5% [0 - 61.7% for the percentiles 2.5% and 97.5%
respectively] five years after the initial infection. The ratio between the mean prevalence
of shedders and the mean prevalence of milk shedders was around 2.5 in the first weeks
of simulation, then it decreased to reach 1.84 at the end of the simulation time. The mean
environmental bacterial load £,,ing increased with time corresponding to a mean transition
probability from S to I-, pruiing, equal to 0.43 at the end of the simulation time. On the
contrary, the mean environmental bacterial load £, was close to O for the 5 years of
simulation (results not shown). The median abortion number was equal to 2 per herd per
year the first year and 3 per herd per year afterwards, but a large variability surrounded
these values [0-9 for the percentiles 2.5% and 97.5% respectively]. In addition, as shown
in Figure 3.6, the route and the level of shedding of a shedder cow had a great impact on
the contamination of the environment. This result is an unsurprising consequence of the
model parameterization. As expected, the most common low level shedding category did
not contribute much to the increase of the environmental bacterial load. On the contrary,
shedders in mucus/faeces of the mid level category and shedders in milk of the high level
category filled the environment in a hon negligible way. Above all, shedders in
mucus/faeces of the high level category (both non aborting and aborting cows) had the

greatest impact.

b. Influence of the epidemiological factors on the model

outputs

The results obtained with 30 runs for each parameter set were robust: the mean and the
percentiles 2.5, 50 and 97.5 of our outputs were similar to those obtained with 200 runs

(results not shown).
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v First experiment

As shown in Table 3.4, since the inertia obtained for the first PC was very high for each of
the model outputs (except in the joined analysis), only the results on the first PC are
presented. For the two mean environmental bacterial loads, the factors Q7 (the probability
distribution of the shedding levels for all the I- and for the I+ shedding in mucus/faeces
after 4 weeks post-calving), # (the mortality rate of € burnetil) and p™ (the proportion of
bacteria shed through mucus/faeces filling the environment compartment) were the most
influential ones. For the mean prevalences of mucus/faeces and milk shedders, the most
sensitive factors were ¢ (the transition probability from I- to I#), s (the fransition
probability from ¢+ to I+ representing the intermittency of shedding) and Q?, whereas
the mean prevalence of milk shedders in a persistent way was mostly impacted by pIp (the
proportion of cows going from I- to I+ and becoming I+ ™*7°%) g and r, (the transition

milk pers

probability from I+ to €+). Concerning the mean seroprevalence, the factor ¢ had a
TS higher than 60%. Lastly, the most influential factors of the mean abortion number
were ¢, QI, s, 1 and p’”f. Globally, the most sensitive two-factor interactions (with a SI
higher than 5%) were QZ:g on the variability of the abortion rate, QZ:, Q1 P on the
variability of the environmental bacterial loads and ¢.pIp, g:rs, pIp:r-on the variability of

the prevalence of milk shedders in a persistent way.

Concerning the variability of the standard deviations of the outputs, the same factors as
above were identified as the most influential ones for the environmental bacterial loads,
the prevalence of milk shedders in a persistent way and the abortion number. The main
effect of the factors was always very low (no SI higher than 5%) on the prevalences of
mucus/faeces shedders, whereas the part of two-factor interactions was much more
important. The most sensitive factors were QZ, ¢, p™ and Q;(the probability distribution
of the shedding levels for all the I+ in the 4 first weeks post-calving). Regarding the
standard deviation of the prevalence of milk shedders, the most sensitive factors were ¢,

Q7 and o (the probability distribution of the shedding routes for the I- cows).

For the joined analysis on six of the dynamic outputs at time 260, the inertia obtained for
the first PC was much lower and the second PC had to be taken into account. For the
means, the most influential factors were QZ, ¢, s, 1z and p™ on the first PC and QZ, u, p™
and ¢ on the second one, by order of importance. For the standard deviation, the most

sensitive factors were ¢, QZ, r-and Q3 on the first PC and Q, p’”f and u on the second.
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v Second experiment

The eight factors chosen in the second experiment (appearing as the most influential
according to the findings of the first experiment) were QZ, @3, g, 5, r2, 11, p™ and pIp. The
results obtained were globally similar to the results of the first experiment described
above (same most influential factors, sometimes in a slightly different order), suggesting

that no important interactions were confounded with the main effects in the first analysis.

Besides, the most sensitive factors on the extinction rate were firstly Q7 and u (with a ST
higher than 14%) then ¢, s, and Q3 (with a lesser SI, but higher than 5%). The most

sensitive two-factor interactions were QZ:gand QI: u.

v Third experiment

Amongst the probability distributions of the shedding levels, Q2% characterizing the
mucus/faeces seronegative shedders was globally the most influential factor on the
variability of the outputs (Table 3.5 and Figure 3.8). Q4* and Q6% the probability
distributions of the shedding levels for mucus/faeces seropositive shedders at anytime
also had a significant impact and, to a lesser extent, Q7* the probability distribution of
the shedding levels associated to the milk seronegative shedders and Q8*, the probability
distribution of the shedding levels for persistent milk shedders excreting in
mucus/faeces. Moreover, the only interaction among the five most sensitive terms was
Q2*:Q4* Overall, the factors with the greatest impact were probability distributions of

the shedding levels in mucus/faeces.
6. Discussion

In this study, we proposed the first model of C. burnetii spread within a dairy cattle herd
taking into account the individual variability of shedding, defined in duration, routes and
intensity. Simulated infection dynamics are consistent with field data: at the last time
point of the simulated time series (five years after the introduction of the initial
infectious case), the mean seroprevalence is around 35% [23.3% - 47.8% for the 25™ and
75™ percentiles respectively], which is consistent with the mean observed seroprevalence
in cows (mean: 40%, 25™ and 75™ percentiles: 25% and 51% respectively) of 56 naturally
infected French dairy herds [149]. At the same simulated time point, the mean prevalence
of shedders is around 35.5% [0 - 61.7% for the percentiles 2.5™ and 97.5™ respectively]
whereas in the field, the apparent proportion of shedder cows is 45.5% in Guatteo et al.

[567] and 38.9% in Rodolakis et al. [131].
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Figure 3.8. Sensitivity analysis of the means of six of the outputs (all except the abortion
number) for the last simulation time point (week 260): results of the ANOVA performed for
the first principal component (inertia: 80.5%). (A) Loadings defining the principal component for
each time variable (in abscissa) and fotal sensitivities for the 10 probability distributions Q
ranked in descending order. Sensitivities are split in main effect (black) and two-factor
interactions (grey). (B) Sensitivity indices of the 15 main factorial terms (main effects or
interactions) in descending order.
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Chapter 3: Representation of the heterogeneity of shedding and identification of the most
influential parameters

The second and main part of our study consisted of a sensitivity analysis. This approach aims
at improving the understanding of complex systems such as stochastic epidemiologic models
with a view to suggesting possible targeted control strategies in livestock infections [43, 93,
156] or to assessing the effect of varying the input parameters on the economic impact

associated with the disease [28, 165].

To perform sensitivity analyses, we used complete and fractional factorial designs.
Alternative approaches are available (see for example [140] or [113]), but factorial designs
are very convenient to control which main effects and interactions can be estimated and to
manage a mixture of qualitative and quantitative factors. In the present study, some factors
(@, B, Beamn 7, Yearw RIL Q2, Q3, Q4 and Q5) were not scalars but probability distributions.
Performing a sensitivity analysis with such types of factors is to our knowledge little known.
We used multinomial distributions with three classes and defined the modalities of each such
factor as four alternative sets of multinomial probabilities. This choice allowed flexibility as

well as a fine control in the probability distributions that were simulated.

To cope with the dynamic and multivariate outputs of the model, the PCA+ANOVA approach
[82] offered additional insight compared to single sensitivity analyses. Multivariate
decomposition methods other than PCA could be used, but the key idea is that sensitivity
analyses are now performed on synthetic and meaningful output variables. As the infection
dynamics is composed of two phases (see on Figure 3.5 an initial phase of rapid evolution
followed by a kind of steady state), the parameters influencing the dynamics may not be the
same between the phases. We additionally performed a preliminary sensitivity analysis on the
very initial phase of infection (first 26 weeks; results not shown). The most sensitive factors
during the first 15 weeks were highly influenced by the initial conditions but very fast
afterwards, the same factors as in experiments one or two were identified as the most

influential ones. We then chose to conduct our study on the whole simulation period.

Another aspect concerns the stochasticity of our model which generates complex dynamics.
Hence, attention has to be paid to this point in order to appropriately apply sensitivity
analysis approaches that are mostly developed for deterministic models. Here, fo be able to
study with confidence how the variation in the outputs of our model can be apportioned to
the uncertainty of epidemiological factors, we checked that the variability due to the model
stochasticity (i.e. the within scenario variability) was negligible compared to the variability
due to the input parameters variability (i.e. the between scenarios variability). More

specifically, to provide reliable analysis on trends, means were calculated on 30 repetitions.
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Standard deviations were also considered as they can provide complementary information on

the most influential factors.

In summary, the method used has the major advantage of allowing to consider temporal
varying outputs and thus to identify parameters influencing the dynamics over the 5 year

simulation period. Moreover, it allows properly dealing with the model stochasticity.

According to our findings (first and second experiments), we can classify the eight
parameters that have most influence on the C burnetii infection dynamics in three

categories, depending on the dynamics aspects they are involved in.

The first group, comprising the parameters related to the transition between health states,
slightly influences the different prevalences and the abortion number. ¢ (fransition
probability from I-to I#) is a physiological parameter associated to seroconversion and it was
estimated based on data from a follow-up of five chronically infected herds [35]. However,
we can assume that those five herds do not cover the whole potential range of variability of
this factor, especially at the beginning of the infection when this parameter probably takes a
different value depending on how recently the infection occurred in the herd. Further
experimental or survey studies focusing on the start of the infection dynamics are needed to
improve the knowledge of this parameter. The parameter s (transition probability from ¢+ to
I+), representing the intermittency of shedding, was inferred from data in the same study
[35] and the estimated values were herd-dependent. It is biologically plausible to assume
that a control measure such as vaccination could decrease this parameter and then have an
impact on the prevalence of shedders. However, since, to our knowledge, no data is currently

I milk pers

available, further studies are needed. The transition probability from to ¢+, rs and

the proportion of cows going from I- to I+ and becoming I+™* 7 pIp have an impact on the
variability in the prevalence of persistent milk shedders. These parameters were not
estimated from data, but calibrated so that simulated trajectories of prevalence of
persistent milk shedders are consistent with field observations. Indeed, following Guatteo et
al. [59], almost one milk shedder out of three was detected as persistent shedder over three
months. In our case, the mean prevalence of milk shedders at time point 260 weeks is 3.3
times the mean prevalence of persistent milk shedders. While pIp seems difficult to be
decreased, r, which rules the shedding duration of persistent milk shedders, could probably
be modulated by control strategies. Although according to Astobiza et al. [16], an
oxytetracycline treatment would not limit the duration of bacterial excretion in a dairy sheep

flock, further studies are needed in order to determine if vaccination could decrease the

length of the shedding period.
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The second group of parameters that influenced the infection dynamics most is related to
the characteristics of € burnetii in the environment. In fact, o™ (proportion of bacteria
shed through mucus/faeces filling the environment compartment) and x (mortality rate of C
burneti) have a strong impact on the environmental bacterial load and to a lesser extent on
the abortion number. Concerning the parameter o™, it is very difficult to quantify in practice
which proportion of bacteria contained in milk, vaginal mucus or faeces contaminates the
environment. Thus, we calibrated this parameter to match the environmental bacterial load
estimated by Courcoul et al. [35]: the posterior medians for the environmental bacterial loads
of each of the five chronically infected herds were comprised between 0.044 [0.005-0.143
for the 95% credible interval (CI)] and 0.558 units of environment [0.201-1.278 for the 95%
CI]. Since those herds did not exhibit any clinical signs, we assumed that the simulated
environmental bacterial load in herds with abortions should be slightly higher. The median of
Evuiingat time step 260 weeks is then 0.56 (with the percentiles 2.5™ and 97.5™ equal to 0.00
and 1.44 respectively). Concerning the parameter u, given that € burnetii withstands harsh
environmental conditions [103], its life expectancy (1/4) within the farm in an infectious form
was assumed to be five weeks in the standard scenario and two or 13 weeks (two extreme
values) in the sensitivity analysis. However, this assumption is difficult to verify. Based on
Dutch studies, it seems that within a month, more than 75% of the manure does not contain
viable € burnetii anymore but that the bacterium survives only a few days in the outer layer
of the manure [161]. It is then difficult to calibrate the parameter i which represents both
the natural mortality of the bacterium and its removal due to the periodic cleaning of the
cattle housing carried out by the farmer. However, it seems possible to influence i by

implementing environmental control measures such as increased cleaning of the farm.

Lastly, as suggested by the results of the first experiment (Table 3.4) and detailed in the
third experiment (Table 3.5), the parameters which have the greatest impact on the
infection dynamics are those governing the shedding levels (through their associated

probability distributions @), especially in mucus/faeces.

As shedding in mucus/faeces much more contaminates the environment as shedding in milk, it
could seem surprising that the parameters governing the probability distribution of the
shedding routes (¢, S and 7) do not appear to influence the model outputs. This could partly
be explained by the parameter values used, especially for Q7y. The quantity of bacteria shed
by a high level shedding cow is so high (compared to mid or low levels), that the probability
distributions governing the levels (such as @ in experiments one and two) are by construction

more important than those related to the shedding routes. However, although exact values of
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parameters Q7y are unknown, the standard values used in this study were calibrated to field

data, which tend to support our findings.

This third experiment was of high interest as it allows highlighting the importance of a sub-
category of animals. Indeed, the factor Q2* (corresponding to the distribution of the levels
of bacteria shed in mucus/faeces by seronegative shedders) has a strong impact on all the
outputs, including the shedder prevalences and the environmental bacterial loads. To a lesser
extent, the factors Q4* and Q6* (corresponding the distributions of the shedding levels in
mucus/faeces of seropositive shedders) also have a significant impact on the variability of
the shedder prevalences. The predominance of Q2* over Q4* and Q6* can be explained by
the larger simulated number of seronegative shedders than seropositive ones. In fact, due to
the low standard value of ¢ (the transition probability from I-to I+#) and the high standard
value of m (the transition probability from I- to S), the number of seropositive cows is very
low during the three first years of simulation compared to the number of seronegative cows.
The standard values of parameters ¢ and m, which were estimated in chronically infected
herds, are perhaps not perfectly appropriate to describe the initial phase of an infection and
then could lead to overestimation of the influence of seronegative shedders. As suggested by
Matthews et al. for Escherichia coli O157 [105], identifying factors such as age, genetics,
reproductive status or other management factors that might predispose an animal to high
levels of shedding would be of undisputable interest. Moreover, control measures should aim
at reducing the proportion of high shedders in mucus/faeces, such as phase I vaccines seem
to do. According to Arricau-Bouvery et al. [13], vaccination dramatically reduced both
abortions and excretion of bacteria in the milk, vaginal mucus and faeces. In Rousset et al.
[136], the vaccine was effective in reducing massive bacterial shedding from a heavily
infected goat herd. In the same way, Hogerwerf et al. [64] found that in uterine fluid, vaginal
mucus and milk of vaccinated dairy goats, both the prevalence of shedders as well as the

concentration of bacteria were reduced.
7. Conclusion

This work led to the identification of key parameters in C. burnetii infection dynamics based
on an original model describing the bacterium spread within a dairy cattle herd composed of
animals with heterogeneous shedding characteristics. The most influential parameters are
associated to the probabilities governing the levels of shedding, especially for mucus/faeces
shedders and to the characteristics of the bacterium in the environment. Some physiological

parameters related to the intermittency of shedding or to the transition from one type of
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shedder to another one also play a non negligible role. Our study also highlights parameters
that have to be precisely assessed and then further investigated to improve the model
accuracy and the understanding of the infection spread. Besides, interventions impacting
those key parameters would be of great interest. The model developed here can be further
used to assess over a longer time scale the effectiveness of different control strategies for

C. burnetiiinfection, such as vaccination.
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I- Why and how to include vaccination in models?

One of the main objectives of epidemiological modelling is to help public health or animal
health decision makers designing guidelines for the management of infectious diseases by
assessing the effectiveness of different control strategies. Various interventions are possible
and they can be distinguished with respect to their aim. If they aim at preventing contacts
between infected and susceptible individuals, contact tracing and quarantine can be
implemented for humans as well as movement ban, market ban, and culling for animals. When
the decrease in the susceptibility of susceptible individuals and/or the infectiousness of
infected ones is aimed at, vaccination and prophylactic and/or therapeutic use of medications
are appropriate measures. Vaccination, which is the topic of this chapter, does not aim to cure
infected individuals. It consists in a preventive immunization: vaccine contains antigens which
hopefully induce an immune response in the host, intended to be similar to the consequences of
an infection. They are assumed to reduce the intensity of clinical signs, and/or to protect from
the infection, and/or to stop, or at least to limit, the infectiousness when vaccinated

individuals get infected.

In the next subsection, we will briefly describe different types of vaccination strategies that
can be implemented to control human and animal diseases. In subsection 2, an example of
modelling-based study aimed at vaccine effectiveness assessment will be presented. Finally, we
will focus in section IT on our study on the C burnetii spread and the assessment by simulation
of the effectiveness of different vaccination strategies in already infected cattle herds. This

last part will be presented as it was submitted to the journal Veterinary Research.

1. Different types of vaccination programmes and

their representation in epidemic modelling

For human diseases, pediatric vaccination is usually used to reduce the prevalence of endemic
diseases like measles, polio or rubella. In a SIR model, it leads to consider that a fraction of
newborns is effectively vaccinated and directly arrives into the R health state. The modeller
has also to take into account that vaccines are often not fully efficient and that immunity is of
limited duration. Therefore, individuals can need boosting. Pediatric vaccination is a long-term
strategy and does not instantly lead to eradication of the infection [77]. However, a major
advantage is that not all individuals need to be vaccinated to eradicate the infection. The

reproduction ratio in a vaccinated population R’ is equal to (1-p)R, with p, the fraction of
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newborns vaccinated and R, the basic reproduction number of the studied infection. Thus, to
get R’< 1, the proportion of vaccinated newborns p has to be at least equal to 1-1/R, This
phenomenon is called “herd effect”: the vaccination of a portion of the population provides

protection to unprotected individuals [70].

For non endemic infections, a mass-vaccination program can be implemented when there is an
increased risk of epidemic. In this case, there is a race between the infection spread and the
vaccination programme and the best way to control the epidemic is a strong and early response
[77]. The consequence of mass-vaccination in terms of modelling is often the addition of a new
health state for vaccinated individuals. Mass-vaccination programmes were well-studied for the
2009 Influenza HINI pandemic. As an example, Sharomi et al. [143] showed that in Canada,
with the estimated vaccine efficacy of 80%, at least 60% of Manitobans needed to be
vaccinated in order to effectively control the pandemic and that the timely implementation of

the mass vaccination program was crucial.

It is also possible to first protect individuals that are most at risk. This strategy is called
“targeted vaccination” and induces the representation in the model of host risk categories. In
human diseases, this strategy was used in France during the Influenza HIN1 vaccination
campaigh, where people at risk of developing complications (e.g. pregnant women, young
children, immunodepressed people, people with chronic broncho-pulmonary affections, etc...)
were first vaccinated. For animal diseases, vaccination of animals in contact with infectious
ones or ring vaccination around confirmed cases are other examples of targeted vaccination

programmes (e.g. the FMD model of Keeling et al. [75]).

For human diseases, pulse vaccination can also be implemented: it consists in periodic
vaccination of certain age cohorts [77]. The aim is to maintain the proportion of susceptible
individuals below the threshold enabling the infection to spread. This type of programme is
then composed of two stages: a punctual vaccination of a high proportion of children of a given
range of age, followed by a period (some years) without vaccination. Such programmes are
logistically easier to implement than continual pediatric vaccination. They can be used for
childhood diseases like measles [4]. Models are a useful mean to determine the maximum
permitted interval between pulses function of the epidemiological, demographic and vaccination

factors [117].

In animal diseases, vaccination is sometimes implemented in an already infected herd. The aim
of such a programme can be preventive only: the immunization of the still susceptible

individuals can decrease the probability of becoming infected, the intensity of their clinical
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signs and infectiousness if they become infected. For some infectious diseases like the
Infectious Bovine Rhinotracheitis, vaccinating the already infected animals can also limit their
clinical signs and infectiousness and therefore be an effective measure to limit the pathogen
spread [137]. However, as vaccines do not have any curative effect, vaccination is first a

preventive strategy.

At last, it has to be highlighted that, when analyzing the results of a simulation model dealing
with vaccination, decision makers have to keep in mind logistical as well as social and economic
limitations (e.g. number of vaccine doses available, time required to vaccinate an individual, non

observance of the vaccine recommendation, etc.).

2. An example of model aimed at assessing the

effectiveness of vaccination

Until recently, models assessing the effectiveness of vaccination were rather little used in
animal health. They mainly dealt with FMD [75] and rabies [146]. In the recent years, they have
been developed. They were used for example to assess the potential impact of imperfect
Salmonella vaccines on the prevalence of infection in infected dairy herds [92], to identify key
factors influencing the apparent success of vaccination to control Bluetongue virus Serotype 8
spread in Great Britain [148], and tfo evaluate different vaccination strategies against

brucellosis in bison [155] and against BVDV in cattle [144].

In order to illustrate in more details the interest of using modelling-based study when
exploring vaccination strategies, we are now going to present the model of Suppo et al. [146]
aiming at assessing the effectiveness of two prophylactic methods (contraception and
vaccination) for rabies control in fox populations. In Europe, fox populations tend to increase,
which could impede the success of oral-vaccination campaigns because of the growing number
of susceptible animals. The objective of this study was to determine the potential interest of
fertility control through the use of baits filled with a contraceptive vaccine in conjunction with
a rabies vaccine. The model was compartmental, deterministic, and in discrete-time. It took
into account host heterogeneity: the fox population was structured in age, sex, and health
state (Figure 4.1). Besides, it was spatially-explicit: a rectangular domain was divided into cells
corresponding to the size of an average fox's home range. Demography was simulated either
exponentially increasing or density dependant through survival and birth rates. Dispersion of
young foxes was represented: these animals had the possibility to settle in a new cell, the
probability of settling in a given cell being function of the distance between the former and the

new cell. The transmission of the infection could occur between foxes living in the same or
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adjacent cells (this transmission was function of B, the transmission rate from an infectious to

a susceptible fox), and during dispersal, when infected young foxes reached a new cell.

mpomp omy

vaccinated| v | healthy d 1 healthy | ¥ |vaccinated
adult adult young: young
males males I males males
. 4 —’ :
| A E—" S :
7 QL
mn
e
~— infected i | infected
adult 71 young
: males
mr H mr
reproduction
T M e W I I
: mn healthy [™"1 healthy nn
: d S
i, | adukt jee---1 young v
H fermales fernales
' . . .. o
H c d el .
Ty TR Woommmsen { A
* * - ~ 7 ™
vaccinated infected | d | infected vaccinated
adule adult young young
females females males females

5% RS S S

Figure 4.1. Interaction between the 12 classes of foxes. mn, natural mortality; mr, mortality induced
by rabies; v, vaccination; d, dispersal; c, contamination
From Suppo et al. [146]

Two vaccination campaigns per year were simulated as well as fertility-control campaigns,
occurring once a year and being effective on females during one breading season. Vaccination
was modelled by adding new compartments for vaccinated animals. Besides, in case of fertility
control, births were decreased by (1-s7), with st the sterilization rate. The initial conditions
consisted in the introduction of a pair of exposed adult foxes in a single cell located at the
centre of the domain. Each of the other cells contained a pair of healthy foxes. The
effectiveness of contraception and vaccination was evaluated for different values of birth and
transmission rates and for each of the type of population growth (exponentially increasing or
density dependant). In exponentially increasing populations (which seems currently the case in
European countries), for 4 to 7 cubs per litter per female, the control of the infection with the
sterilization programme alone was impossible because the healthy population would go extinct
before rabies was eradicated. For a programme with only vaccination, the vaccination rate had
to be high, especially for low transmission rates and high births rates, to lead to rabies

extinction. In the field, a maximum of 70% of the population can be vaccinated during
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vaccination campaigns. There were then cases for which vaccination alone failed to eradicate
the infection. However, a combination of both fertility control and vaccination decreased the
birth rate to a value requiring a lower vaccination rate and was then effective to eradicate the
virus. Thus, those results suggested that contraception could be a possible additional method
to control rabies outbreaks in highly dense fox populations. Nevertheless, the authors
highlighted the need of further studies including fox culling, changes in spacing strategies
when fox density increases, and the influence of dispersal in the recovery of healthy

populations, to draw robust conclusions.

In the model developed in this example, it was possible fto simulate the same control
programmes (i) in both an exponentially increasing and a density-dependant host population
growth, and (ii) for different values of birth and transmission rates. The conclusions regarding
the effectiveness of control measures were different regarding the characteristics of the fox
population and virus transmission. Therefore, models are a useful fool to assess the

effectiveness of control strategies in different epidemiological situations.
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1. Abstract

Q fever is a worldwide zoonosis caused by Coxiella burnetii which induces reproductive
disorders in livestock. Ruminants are recognized as the most important source of human
infection. The control of this infection in cattle is crucial to limit both the infection in livestock
and the zoonotic risk. Although vaccination is currently advised in the field, the comparative
relevance of different vaccination protocols in terms of the duration of the vaccination
campaign and category of animals to be targeted has never been explored. Our objective was to
compare, by simulation, the effectiveness of three different vaccination strategies in an

already infected dairy cattle herd.

We used a stochastic individual-based epidemic model coupled with a model of herd demography
to simulate three temporal outputs of shedders prevalence, environmental bacterial load and
number of abortions and to calculate the infection extinction rate. For all scenarios, the
temporal outputs strongly decreased with time at least in the first years of vaccination.
However, vaccinating only three years is inadequate to stabilize these dynamic outputs at a low
level. Vaccination of both cows and heifers is more effective than vaccinating heifers only. For
heifers only, (i) the outputs decreased much slower and never reached the effectiveness of full

herd vaccination, (ii) the infection extinction rate is twice as low as well.
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Besides valuable indications on vaccination effectiveness, our model could also be adapted in
further studies to simulate and asses other Q fever control strategies such as environmental

and hygienic measures.
2. Introduction

Q fever is a zoonotic disease caused by Coxiella burnetii, a bacterium found worldwide in a wide
range of animals. In ruminants, the infection may cause abortions, infertility, metritis or
chronic mastitis [, 20, 26, 125], which can lead to nhon negligible economic losses for the
infected herds. Furthermore, since 2007, Q fever has become an important public health
problem in several parts of Europe [72, 121, 159]. Although Q fever is asymptomatic in 60% of
human cases, it can lead to acute or chronic infections and cause flu-like syndrome, hepatitis,
pneumonia, endocarditis or abortions®. In the Netherlands, where a steep increase in the
number of human cases was observed in 2007, 2008, and 2009, a link has been established
between some human cases and farms of small ruminants where abortions due to Q fever were
detected [141]. Ruminants are indeed recognized as the main source of human infection [54,
109]. Infected animals shed large quantities of bacteria into the environment through faeces,
vaginal mucus, urine, milk and especially parturition products [11, 20, 59]. € burnetii survives
very well in the environment and contaminates aerosols and dust [167]. These infected particles
are the main route of infection for both animals and humans. Due to its importance in both
animal and public health, the control of this infection is crucial. Therefore, any control measure
leading to a decrease in the prevalence of shedders and in the environmental bacterial load

seems a key point to limit both the spread of the infection in ruminants and the zoonotic risk.

Nowadays, in infected cattle herds in France, control measures against Q fever consist of
environmental measures such as destruction of placentas or disinfection of births locations,
antibiotic treatment like oxytetracycline injections during the last month of gestation, and
vaccination [132]. Observations concerning antibiotics are contradictory. In Berri et al. [22],
antibiotics in sheep suppressed in the long run both the abortions and the shedding of C
burnetii, whereas in Astobiza et al. [16], the oxytetracycline treatment neither prevented the
shedding of bacteria nor limited the duration of bacterial excretion. The EFSA concluded that,
as antibiotic treatment in animals is not effective in influencing the epidemiology of infection,
and as widespread antibiotic usage is inadvisable because of the development of resistance,

antibiotic treatment for £ burnetii infections should be avoided [39]. According to Rodolakis

12 ECDC, Risk assessment on Q fever, (2010) [on line]
http://ecdc.europa.eu/en/publications/Publications/1005_TER_Risk_Assessment _Qfever.pdf
[consulted 25 August 2010]
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et al. [132], vaccination would be an efficient tool to control the disease. Vaccination with a
phase I vaccine in cattle was shown to suppress the shedding in milk, placenta, uterine fluid,
vagina and colostrum [25, 139]. More recently, Arricau-Bouvery et al. [13] compared the
efficiency of phase I and phase II vaccines in goats: the phase I vaccine prevented abortions
and dramatically reduced the frequency of bacterial shedding in the milk, vaginal mucus and
faeces, while the phase IT vaccine did not affect the course of infection. In Rousset et al.
[136], the vaccine appeared neither able to prevent infection in exposed kids, nor to clear
infection in infected goats, but effectively reduced the level of shedding in a heavily infected
herd. Hogerwerf et al.”® also found that both the prevalence of shedders and the bacterial load
in uterine fluid, vaginal swabs and milk were reduced in vaccinated dairy goats. Besides,
according to Guatteo et al. [61], susceptible cattle that were vaccinated when non pregnant had

a five times lower probability to become a shedder than an animal receiving placebo.

Thus, in the field, vaccination is often recommended in infected herds after the occurrence of
abortions due to Q fever. However, the studies assessing the vaccination efficacy in ruminants
were carried out in experimental conditions or for a limited period of time and they evaluated
the effect of the vaccine mostly at the individual level. Therefore, it is difficult to extrapolate
those results to the case of a whole herd vaccination over several years. Another point to
consider is that vaccination generally takes place in the field in infected herds without any
preliminary individual diagnostic tests. Some cows may be vaccinated when still susceptible
while others are already infected. Further studies are needed to assess the overall
effectiveness of such vaccination programmes in cattle herds. Different vaccination strategies
can be implemented: the duration of the vaccination programme as well as the category of
vaccinated animals (e.g., the whole herd or the heifers only) have to be determined. To assess
the long run effectiveness of these different strategies in reducing the infection prevalence or
the environmental bacterial load, field studies are not optimal: no reference situation (without
control strategy) is generally available, and long-term observations must be performed, making
these studies very costly and even unfeasible. Modelling is therefore a convenient approach as
it provides means to compare the effectiveness of different potential management strategies
[77]. The use of mathematical models is nowadays widely used to compare control measures for
both human [1, 143, 160] and animal infectious diseases [7, 17, 49, 87]. For C burnetii
infections, it would allow testing a wide range of vaccination strategies in different initial

situations.

13 Hogerwerf L., Van den Brom R., Roest H.J., Bouma A., Vellema P., Pieterse M., Dercksen D., Nielen
M., Vaccination of dairy goat herds reduces Coxiella burnetii prevalence and bacterial load in goat
excret. Submitted for publication in Emerging Infectious Diseases.
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The objective of this model study is to assess the comparative effectiveness of several
vaccination strategies in an already infected dairy cattle herd. The criteria considered for
efficacy evaluation were changes in the prevalence of shedders, the environmental bacterial

load, the number of abortions, as well as in the extinction rate of infection.
3. Materials and methods

A model representing the C. burnetiiinfection dynamics in a standard French dairy cattle herd
and different vaccination strategies was elaborated based on a previous variant model not
including interventions. First of all, the epidemic model representing the natural course of
infection (i.e. without any control strategy) will be briefly described, then the inclusion of
vaccination will be presented and finally, the different vaccination scenarios that we tested will

be explained in detail.

a. General description of the epidemic model of the natural

course of infection

The model represents the spread of the bacterium in a dairy herd of lactating and dry cows
(diagram flow in Figure 4.2 and parameters in Table 4.2 of subsection 7. Supplementary
material). It is a stochastic individual-based model in discrete time with a time step of one
week. Each cow is in one of the six mutually exclusive health states at a given time: S (non-
shedder apparently susceptible cow), I; (shedder which has the possibility to eliminate the
bacterium and become S again), I, (shedder which does not have anymore the possibility to
become S again), I; (shedder which does not have anymore the possibility to become S again
and which sheds in milk at higher levels and for a longer period of time than I - health state
described in Guatteo et al. [59]), £ (non-shedder but still infected cow), £, (hon-shedder which
was C;in the past but eliminated the bacterium). Moreover, as a great heterogeneity between
C. burnetii shedders has been described [11, 37, 59, 131], this individual variability in the
shedding routes and the shedding levels (i.e. the quantities of bacteria shed) is taken into
account in the model. Sub-categories are then defined for the shedder cows with respect to

the shedding route. Thus, an I; or I, cow can shed in (1) milk only (denoted by I;” or
I["respectively), (2) vaginal mucus and/or faeces (I;” or IZ' respectively), or (3) milk and
either vaginal mucus or faeces or both (I or I respectively). In the same way, an
I]"sheds in milk only and an I sheds in milk and vaginal mucus and/or faeces (by definition,

an I; animal always sheds in milk and can not be in the I state).
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Figure 4.2. Flow diagram describing the modelled spread of C. burnetiiwithin a vaccinated cattle
herd. The health states are: S, non-shedder apparently susceptible cow, I; shedder which still has
the possibility to eliminate the bacterium and to become S again, I, shedder which does not have
anymore the possibility to become S again, I;, shedder which does not have anymore the possibility
to become Sagain and sheds in milk in a persistent way, ¢;, non-shedder but still infected individual

and &, non-shedder which was C;in the past but eliminated the bacterium. The V. states (SV., I V.,
IV, I;V,, CiV.and C,V,) are defined in the same way as S, I; I, I, C;and C;respectively, except
that these animals have been vaccinated when susceptible and non pregnant and are then assumed

"vaccinated in an effective way" (V) Tand IV, cows are in the subcategory m if they shed in milk

only, mfif they shed in vaginal mucus/faeces only and mmf if they shed in milk and vaginal
mucus/faeces. £ represents the environmental bacterial load and p, the probability of infection or
reinfection for non V, individuals, is equal to 7 —exp("&") . p, is the probability of infection or
reinfection for V, individuals, which is a fraction of p. The other model parameters are presented
Table 4.3. of subsection 7. Supplementary material. €, &5 €3, £/V., €2V. and €;V.are the quantities of
bacteria shed during a time step by an individual I}, I, I3, I;V,, I;V.and I;V.respectively and
contaminating the environment. For any shedder, ¢ represents the sum, for each shedding route, of
the quantity of bacteria released, Q7y, times p its fraction reaching the environment of the herd.
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The possible transitions between health states are represented in Figure 4.2. Shedders (I;, I,
and I3) fill the environment compartment (£) with bacteria: the quantity of bacteria arriving
into the environment during a time step is the sum for all the shedders and all the shedding
routes of the quantity of bacteria shed, Q7y (the shedders can shed at low, moderate or high
level, Qty being different for each of these levels according to probability distributions Q),
times p the impact of this shedding on the environment (i.e. p is the fraction of bacteria shed
which arrives into the environment of the herd - for more detail see Table 4.3 of subsection 7).
The probability of infection or re-infection, p (transition from S to I; or from ¢, to I7) is

expressed at each time step as 7-exp(*) where £; is the quantity of bacteria in the herd

environment at time 1 (one unit of & corresponding to a probability of transition from S to I;
of (1 - 1/e)). The mortality rate of C burnetii in the environment, u, includes the natural
mortality of the bacterium and its removal in relation to the periodic cleaning of the cattle

housing carried out by the farmer.

As abortions are the main clinical signs attributable to £ burnetii infections [132, 135], they
are also represented in the model: a cow can abort after a transition from S to I, from C; to I,
or from ¢, to I, but only once in her life. If the cow aborts in the first or second third of
gestation, she sheds through the mucus/faeces a moderate quantity of bacteria Q7y, whereas
if the abortion occurs in the last third of gestation, a high quantity of bacteria is released

through this shedding route.

The epidemic model was also coupled to a model of population dynamics in order to represent
the gestation and lactation cycles of each cow. In short, for each cow the lactation number is
represented, as well as the stage of lactation, the stage of gestation, the abortion history, the

health state and the shedding characteristics (if the cow is shedding).
b. Representation of the vaccination

Based on Guatteo et al. [61], we assumed that the vaccine is effective when applied to non
pregnant uninfected individuals. Thus, in the epidemic model, non preghant S and ¢ individuals
become partly protected when vaccinated and move into the ‘'vaccinated in an effective way'
(V) states (bottom of Figure 4.2). Pregnant S and C;, as well as all I;, I; and C; are what we
defined the uselessly vaccinated: the vaccine has no effect on the infection dynamics in these
animals, and they keep moving between the states S, I, I, I C;and C, (top of Figure 4.2). Six
additional health states are defined for the V, individuals. SV, and C,V, individuals can get
infected and become IV, or IV, respectively with a decreased transition rate p, (equal to a
fraction of p). Except for this difference between p and p,, the V. animals can evolve through

the same health states with identical transition rates as the non I, animals.
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Regarding the shedding levels, according to Guatteo et al. [61], the only quantified bacterium
load of a I, shedder was lower than the lowest bacterium load of the placebo cows. Besides, in
Rousset et al. [136], the bacterial loads in vaginal swabs were lower in vaccinated than in non
vaccinated animals. Therefore, we assumed that no high level shedding is possible for I, animals
and that the probability to shed at a low level is increased (expressed through probability
distributions QV. in Table 4.3 of subsection 7). Finally, based on Arricau-Bouvery et al. [13], it

was assumed that the V,cows cannot abort.

¢. Vaccination scenarios

v Scenario 1: vaccination over the whole simulation period (10 years)
At the start of the simulation, all the cows are vaccinated and all the heifers entering the herd
of cows are assumed to be SV, (susceptible and vaccinated when non pregnant). In addition, all
the animals are boosted every year: there is no loss of immunity and no possible transition from

the I/, states to the non I/, states.

v Scenario 2: vaccination for a limited period of time (3 years)
The assumptions are the same as those of scenario 1 except for the vaccination duration. Here,
the herd is supposed fo be vaccinated for 3 years. At the end of this 3 year period, two

assumptions regarding the evolution of immunity were explored.

= Scenario 2A: immunity lasts for one year. One year after the end of the
vaccination period, the I, animals loose their immunity and move to the non

equivalent states (e.g. an IV, cow becomes an I cow).

= Scenario 2B: lifelong immunity. After the vaccination period, the I, animals do
not loose their immunity and keep moving within the V, states until the end of

their life.

v Scenario 3: vaccination of the heifers only over the whole simulation period (10
years)

At the start of the simulation the cows are not vaccinated: they stay in the non V,states and

progress through infection states. Only the heifers arriving thereafter are assumed to be

vaccinated. These animals are in the SV, state when entering the dairy herd. In addition, they

are boosted every year: there is no loss of immunity and no transition from the V, states to the

corresponding non V, states.

v" Negative control

No control programme is implemented and all the animals progress through the non V. states.
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d. Parameters and initial conditions

The values of epidemiologic parameters are displayed in Table 4.3 of subsection 7. Parameters
m, g, ri, s and u were fixed at their values estimated through Bayesian inference using data
from five French chronically infected dairy cattle herds [35]; probability distributions of
shedding related parameters, «, B, Ben. 7. Ve, (governing the partition in subcategories
according to the shedding route) and Q7, Q2, Q3, Q4 and Q5 (characterizing the shedding
levels), were qualitatively calibrated to match field data. The parameters governing the
demography and herd management (Table 4.2 of subsection 7) were chosen to represent a

standard French dairy cattle herd.

The transition rate p, was parameterized using the probability for an initially susceptible animal
to become a shedder in Guatteo et al. [61], which is equal to 0.21 with a 95% confidence
interval of 0.05-0.90. Thus, we performed the simulations with p,=0.21p. However, in scenario 1,
two additional values were also tested (p=0.05p and p,~=0.90p) in order to determine the

influence of this parameter value on the model output.

We simulated 100 repetitions of the introduction of a primiparous I, cow which has just calved
into a fully susceptible herd of 50 cows to generate infected herds. We let the model run until
three abortions had occurred during a period of 12 months tfo initiate reactive vaccination. This
limit was motivated by the fact that testing for a large panel of abortive pathogens (including
C. burnetii) is usually performed in France from the 3™ abortion within the calving period. Thus,
we obtained 100 so called “initial herds”, different from each other. Then, for each initial herd,
the three vaccination scenarios and the negative control scenario were run once over a 10-year

simulation period.
e. Outputs of the model

The mean prevalence of shedders, the number of abortions per herd per year and the
environmental bacterial load were the model's dynamic outputs of interest. In addition, for
each scenario, the rate of extinction over the 10 year simulation period was calculated as the
ratio between the number of extinct trajectories and the total number of repetitions. The
infection was assumed to be extinct when there were no more I, IV, C>and C.V, cows in the

herd at the end of the simulation time.

Moreover, as the vaccine was reported to be effective for susceptible animals only [61], we
tested whether the vaccination schedules were less effective when applied in heavily infected
herds. Thus, the extinction rate was separately calculated in scenario 1 for several classes of

initial prevalences of shedders, or initial prevalences of shedders in milk. The 100 simulated
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herds were split by threshold prevalences at the 20™ and 80™ percentiles, resulting in the
following classes: initial total shedders prevalence of [0-15%], [15%-40%] and [40%-100%] or
initial milk shedders prevalence of [0-6%], [6%-20%] and [20%-100%].

4. Results

a. Description of the herds at the start the vaccination strategy

At the start of simulations, the mean prevalence of shedders (over 100 initial herds) is equal to
28.5% (min: 0.0%, max: 63.8%) and the mean prevalence of milk shedders amounts to 13.3%
(min: 0.0%, max: 37.9%). In a herd, 92.8% of the cows on average have been shedders for at
least one time step (min: 40.8%, max: 100%). The mean environmental bacterial load is 0.30

units (min: 0.02, max: 0.98) and the herds consist of 49.8 cows on average (min: 43, max: 58).

b. Influence of the vaccination scenarios on the temporal model

outputs

If no control strategy is implemented, the mean prevalence of shedders, the mean
environmental bacterial load and the mean number of abortions increase to a steady state of
respectively 47%, 1 unit of environment and 4.1 abortions per herd per year. On the contrary,
for any vaccination scenario, all these outputs decrease with time at least for the first years
of vaccination (Figure 4.3.a, 4.3.b, 4.3.c). In scenario 1 (vaccination of heifers and cows during
10 years), the decrease covers the whole period. In scenario 3 (vaccination of heifers only for
the whole simulation time), the decrease is much slower in the first three years of vaccination
than in scenario 1: the latter allows reaching a mean prevalence of shedders of 5% and a mean
environmental load of 0.05 respectively 2 and 1.5 years sooner than scenario 3. At the end of
the vaccination period, the mean prevalence of shedders and environmental bacterial load are
respectively equal to 2.8% and 0.04 units in scenario 1 and 5.0% and 0.06 units in scenario 3.
The mean number of abortions in the first year of the vaccination program is equal to 2.5 and
3.6 in scenarios 1 and 3 respectively. In scenario 2, there is an increase in the mean prevalence
of shedders, the yearly number of abortions and the environmental bacterial load, after the
vaccination is ceased. For scenario 2A, this increase occurs immediately after the loss of
immunity, whereas for scenario 2B (lifelong immunity), the increase is almost zero in the first
year without vaccination and more progressive afterwards. Thus, the mean prevalence of the
shedders is around 14% for both scenarios 2A and 2B three years after the simulation start

and increases to respectively 45.4% and 32.0% eight years after the simulation start.
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Figure 4.3. Temporal dynamics of the mean prevalence of shedders (a), the mean environmental

bacterial load (b) and the mean number of abortions (c) with respect to the vaccination scenarios.
Scenario 1: vaccination of heifers and cows for a 10-year period (black line); scenario 2: vaccination
of heifers and cows for a 3-year period with (scenario 2A - grey line) or without (scenario 2B -grey
dotted line) loss of immunity one year after at the last vaccination; scenario 3: vaccination of
heifers for a 10-year period (black dotted line); control: no vaccination (black thick line). Temporal
dynamics of the mean prevalence of shedders (d) and mean environmental bacterial load (e) in

scenario 1 with different values of p, (fransition rate from SV, to I;V,).
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The mean number of yearly abortions increases from 0.9 the third year after the start of
vaccination to 4.2 and 3.7 abortions per herd respectively during the eighth year after

vaccination starts.
c. Influence of the p, values on the model dynamics

As shown in Figure 4.3.d and 4.3.e for the scenario 1, the mean prevalence of shedders is highly
influenced by the values of p,, whereas the mean yearly number of abortions (results not
shown) and the mean dynamics of environmental bacterial load are not affected by this
parameter. For p, = 0.9p, the mean prevalence of shedders is almost stable within the first
three years of vaccination and decreases afterwards to reach 9.3% at the end of the
simulation time. On the contrary, when considering p, = 0.05p, the decrease is much faster and

the mean prevalence of shedders is less than 1% at the end of the simulation time.

d. Influence of the vaccination scenarios and of the p, values on

the extinction rate

Whereas the extinction rate is nil when no control programme is implemented, it varies from
4% to 42% between the vaccination scenarios and the values of p, (Table 4.1). It appears that
most of the extinctions occur late: as shown on Figure 4.4 for the scenario 1, only one third of

the extinctions happen in the six first years of the vaccination programme.

Table 4.1. Extinction rate and mean time to extinction for each of the vaccination scenarios.
Control: no control programme; scenario 1: vaccination of heifers and cows for a 10-year period;
scenario 2: vaccination of heifers and cows for a 3-year period with (scenario 2A) or without
(scenario 2B) loss of immunity one year after at the last vaccination; scenario 3: vaccination of
heifers for a 10-year period.

Scenario
Criteri 1 1 1
riteria Control 24 28 3
p=005p p,=021p p,=09p
Extinction rate  0.00 0.48 042 0.18 0.04 0.13 0.20

Mean time

oL week 349 week 361 week 275 week84 week?216 week 411
to extinction

The extinction rates for scenario 1 and p,= 0.21p are presented in Figure 4.5 according to the
three classes of initial shedders prevalence and milk shedders prevalence. There is no
significant difference between them (x? tests, p>0.05). However, the extinction rates tend to

be lower when the initial prevalences of shedders are high.

124



Chapter 4: Assessment of the effectiveness of vaccination strategies

25

20
|

Proportion of extinctions (%)
15
|

0
1

1

[ ]

o R L

1 2 3 4 5 ] i 8 9 10

Year after the start of vaccination
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Figure 4.5. Extinction rate, for scenario 1 and p, = 0.21p, stratified in 3 classes according to the
initial prevalence of shedders (black bars) or milk shedders (grey bars) at the start of vaccination.
Amongst the 100 runs, the 1°" class comprises the trajectories with the 20% lowest initial
prevalences and the 3™ class those with the 20% highest initial prevalences. The 2™ class includes
the other repetitions.
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5. Discussion

In this study, we modelled the long ferm effectiveness of three different vaccination
strategies in an infected dairy cattle herd [(1) vaccination of the whole herd for 10 years, (2)
vaccination of the whole herd for 3 years and (3) vaccination of the heifers only for 10 years]
and showed that scenario 1 was the most effective control strategy. In fact, the three
vaccination strategies all reduced the prevalence of shedders, the environmental bacterial load
and the number of abortions. However, their effectivenesses are not equivalent. As the
infection is most often not eradicated in the first years of vaccination, an early cessation of
vaccination (scenario 2) will be ineffective in the long run. Its short-term effect on the
infection dynamics depends on the lifetime of immunity for efficiently vaccinated cows.
According to Rodolakis et al. [133], in infected herds, more than 80% of the vaccinated cows
still had immune markers one year after vaccination. However, at the same time, less than 60%
of the vaccinated heifers were still skin-test positive. In the field, this means that immunity
should last between one year (scenario 2A) and life long (scenario 2B). In that context, the
increase of the prevalence of shedders, the environmental bacterial load and the number of
abortions should not be observable in the first months following the cessation of vaccination.
Nevertheless, the infection is spreading again. Thus, before stopping a vaccination programme
on a farm, it seems essential to determine the presence or absence of €. burnetiiin the herd.
Diagnostic tests at a herd level (e.g. PCR in bulk tank milk) can probably be helpful [58],
although they are imperfect.

According to our simulations, when only the heifers are vaccinated yearly (scenario 3), the
decrease in the prevalence of shedders, the environmental bacterial load and the number of
abortions is much slower than when all the animals are vaccinated (scenario 1): it takes 2 to 2.5
additional years to reach the same level of prevalence of shedders and 1.5 to 2 additional years
to reach the same level of environmental load, although the two strategies only differ in the
initial action of the control programme. Thus, from an epidemiological point of view, scenario 3,
seems not the best strategy. In contrast, over the 10-year vaccination period of scenario 1, the
mean prevalence of shedders and environmental bacterial load are decreased by 10 and 7
respectively. Although after 10 years of vaccination, the €. burnetii infection is still present in
58% of case herds, the vaccination of both heifers and cows from the start of the programme
and for many years is in our study the most effective strategy. It has to be highlighted that
the results of our study depend on the model structure and parameters values. The model
represented the heterogeneity of shedding which is known to affect infection dynamics and

hence the interventions efficacies in many diseases [104]. Indeed, model parameters governing
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the shedding levels strongly influenced the . burnetii dynamics (see Courcoul et al.™).
Moreover, parameter values were inferred or calibrated from field data of naturally infected
dairy cattle herds [35]. Thus, we took into account the latest knowledge on ¢ burnetii

infections.

The probability of infection for an efficiently vaccinated susceptible cow p, was quantified
based on Guatteo et al. [61]. As the confidence interval of this parameter was wide, we studied
the influence of this parameter value on the model outputs. Although the mean shedder
prevalence was highly influenced by the value of p,, the mean environmental bacterial load
(which indirectly represents the infection risk for both animals and humans) decreased by
roughly the same rate regardless of the parameter value. This is likely because the efficiently
vaccinated animals shed in decreased quantities. Therefore, irrespective of whether the mean
prevalence of vaccinated shedders remains high, the prevalence of high shedders was reduced,
with a major impact on the environmental load. This result has also been described by Lu et al.
[92] who showed that, to reduce the Sa/monella prevalence in the long term, highly effective
vaccines lowering the infectiousness would be a better choice than highly effective vaccines
reducing susceptibility. Interestingly, whereas the environmental bacterial load was hardly
sensitive to p, (infection probability for efficiently vaccinated cows), the extinction rate was.
Therefore, if the vaccine is to be used for eradication of C. burnetii from infected farms, both
susceptibility and infectiousness have to be determined more accurately for the model to be
used for prediction purposes or decision support. According to Rousset et al. [136], the lowest
shedding level in vaginal swabs was shown to be more frequent in vaccinated than non
vaccinated goats. However, further studies are needed to determine if a decrease of
infectiousness is observed for all the vaccinated animals or only for the efficiently vaccinated

ones and to quantify this decrease in all the shedding routes.

It should be noted that the extinction rate is highly influenced by the effect of vaccination on
the susceptibility, the level of shedding and the mortality rate of the bacterium in the
environment®, which are all uncertain variables in our model. This extinction rate should then be
interpreted with caution and used to compare different control strategies within the model.
However, the behavior of the extinction rate suggests that it may be difficult and takes time

to get free from C. burnetii within a herd.

4 Courcoul A., Monod H., Nielen M., Klinkenberg D., Hogerwerf L., Beaudeau F., Vergu E., Modelling of
the heterogeneity of shedding in the within herd Coxiella burnetii spread and identification of
related key parameters through a sensitivity analysis, submitted for publication in Journal of
Theoretical Biology.
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In conclusion, our modeling approach showed that a long term yearly vaccination will reduce
infection risk in vaccinated herds, but an additional cost-benefit analysis considering the

economic aspects of control programmes is needed to design an optimal control strategy.
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7. Supplementary material

Tables 4.2 and 4.3 provide the definitions and values of all the parameters of the model.
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Table 4.2. Description of the model parameters for the herd demography and their values used for
simulations.

Parameters Standard value

Replacement rate (year™) 0.355

lactation 1 0.0057
lactation 2 0.0052
lactation 3 0.0065

lactation 4 0.0067

lactations
5&6

Culling rate (week™)

0.0161

lactation 1 0.337
lactation 2 0.252
lactation 3 0.173
lactation 4 o
lactation 5 0.088
lactation 6 0.04

Probability distribution of the
lactation humbers of the cows at
the start of simulation

Calving-calving interval (weeks) 55
Dry period (weeks) 8
Non gestation period (weeks) 15
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Table 4.3. Definitions of the epidemiological model parameters and their values
used for simulations.

Parameter Definition Value
m (week™") Transition rate I;=> Sand I;V, => SV, 07°
R Transition rate I;=> (I, or I3) and I;V, => (I,V,
1 1 2 3. 1Ve 2Ve a
g (week™) or I3V 0.02
Proportion of cows going from I; to (I;or I3)
plp and becoming Izand going from I;V, to (I,V, or 05
I;V.) and becoming IV,
ri(week™) Transition rate I,=> Cyand IV, => GV, 02°
rs(week™) Transition rate I3=> C;and I3V, => GV, 0.02
s (week™) Transition rate ¢;=> I,and )V, => IV, 0.15¢
7(week?) Transition rate & => Cand GV, => Col, 0.0096
u (week™) Mortality rate of €. burnetii 0.2¢
Probability of abortion after a transition S =>
probav I, C=> Iyand Co=s I 0.02
Proportion of bacteria shed through
o mucus/faeces filling the environment 0.2
compartment
itk : : :
ik g omf p™ = proportion of bacteria shed through milk 1
12
ratio p"%/ " filling the environment compartment 0125
o y Probability distribution of the shedding routes X
mucus/feces for the I cows 062
milk+mucus/feces 007°
milk 0.61°
5 </feces Probability distribution of the shedding routes .
mucus/ec for the I, cows after 4 weeks post-calving 0.33
milk+mucus/feces 0.06°
milk - o . 0.14°
Probability distribution of the shedding routes :
B catv mucus/feces for the I, cows in the 4 first weeks post- 05°
milkemucus/feces VN9 0.36°
y milk Probability distribution of the shedding routes 0.83°
milk+mucus/feces  Tor the I cows after 4 weeks post-calving 017
milk Probability distribution of the shedding routes 0.25b
Y cal for the I3 cows in the 4 first weeks post- '
milk+mucus/feces  calving 0.75>
low level Probability distribution of the shedding levels ~ 0-85°
Q! mid level for all the I;and for the I;shedding in 0.15°
high level mucus/faeces after 4 weeks post-calving o

130



Chapter 4: Assessment of the effectiveness of vaccination strategies

low level Probability distribution of the shedding levels 0.4°
Q2 mid level for the Ishedding in milk after 4 weeks post- 0.5P
high level calving 0.1°
low level 0.25°
Q3 mid level Probability distribution of the shedding levels .
for all the I, in the 4 first weeks post-calving 0.25
high level 0.5°
low level Probability distribution of the shedding levels 06
Q4 mid level for the I;shedding in mucus/faeces after 4 0.4°
high level weeks post-calving o
low level Probability distribution of the shedding levels 0.15°
Q5 mid level for all the I;shedding in milk and for the I3 .
shedding in mucus/faeces in the 4 first weeks 0.6
high level post-calving 0.25
low level 1/3000
Qty (units of . Quantity of bacteria released by shedders in
environment) mid level low, mid and high levels respectively 1/30
high level 1
low level Probability distribution of the shedding levels !
Q1V, mid level for all the I;V, and for the IV, shedding in 0
high level mucus/faeces after 4 weeks post-calving 0
low level el e : 0.9
Probability distribution of the shedding levels
Q2V, mid level for the IV, shedding in milk after 4 weeks 0.1
high level post-calving 0
low level 0.5
. Probability distribution of the shedding levels
Q3 mid level for the I,V in the 4 first weeks post-calving 05
high level 0]
low level Probability distribution of the shedding levels !
R4V, mid level for all the I3V, shedding in mucus/faeces 0
high level after 4 weeks post-calving 0
low level Probability distribution of the shedding levels 0.75
. for all the I3V, shedding in milk and for the
Qove mid level I;V, shedding in mucus/faeces in the 4 first 025
high level weeks post-calving 0
standard value 0.21°
o Ratio between the transition rate SV, => I;V,
i bounds of the 95% e f1ve c
ratio p/p CT tested for and the transition rate S=>I; 0.05
scenario 1 09°¢

“from Courcoul et al. Proc Biol Sci. (2010)

bcalibrated to match field data (R. Guatteo 2009, personal communication)
“from Guatteo et al. Vaccine (2008)
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The aim of this thesis was to develop a model representing the spread of £ burnetii within a
dairy herd in order to better understand the course of infection in cattle and to enlighten
decision makers on the effectiveness of control measures, since this bacterium poses a problem
for both human and animal health. This work was done in keeping with the EFSA
recommendations which recently highlighted the need to objectively assess relevant
epidemiological parameters and the effectiveness of control options for € burnetii infection in
domestic ruminants populations [39]. We focused on the within-herd ¢ burnetii spread.
Although this scale may seem inappropriate for the study of the bacterial spillover from animal
populations to humans, it is crucial to rigorously explore dynamics at finer scales before
focusing on the whole dynamical process. More precisely, before representing the infection
spread at a regional scale, understanding the within-herd infection dynamics is critical. The
speed and trends of the within-herd infection spread, the heterogeneity related aspects
between animals and/or farms are examples of key points that have to be checked before

developing an inter-herds or an animal-human model of £ burnetii transmission.

Although Q fever is a European burning issue (mainly because of the current Dutch epidemic),
the model we developed was to our knowledge the first epidemic model dealing with C. burnetii

spread. Our study involved three main steps:

1. First, the model was conceptualised and the inference was performed based on field data
in a Bayesian framework. The inference process was not only a prerequisite of the future
use of the model, but it also allowed to quantify parameters having a biological meaning
(e.g. probability of infection in a chronically infected herd, duration of shedding and non
shedding periods, efc...) and then fo better understand the natural course of the infection

in a dairy cattle herd.

2. Then, after the model was made more complex and realistic by including variability within
and between animals in the shedding duration, routes, and intensity, the factors most
influencing the infection dynamics were determined through a sensitivity analysis. This
step was necessary for linking the model uncertainty to some of the epidemic parameters:
this allowed the model improvement by highlighting the need of an accurate quantification
of uncertain but influential parameters. Moreover, the identification of influential
mechanisms was part of the understanding of the infection process. It also plays a role in
the definition of effective control strategies, by directing interventions tfowards the most

vulherable facets of the disease transmission.

3. At last, we tested by simulation the long term effectiveness of three different vaccination

strategies in reducing the shedders prevalence, number of abortions, environmental
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bacterial load, and in leading to extinction of infection. By taking into account the available
knowledge on the vaccine effect, we thus determined the impact of vaccination according
to the duration of the vaccination programme and the composition of the vaccinated

population.

In section 1 of the general discussion the major findings of this thesis will be summarized.
Then, section 2 will discuss the advantages and limits of the modelling approach which has been
used, and section 3 the available and required data for model conceptualization, calibration and
validation. Lastly, in section 4 a few implications and perspectives of this thesis work will be

provided.

I- Major findings

The preliminary main achievement of this thesis was the elaboration of the first model in the
literature for the study of C burnetii spread within a dairy cattle herd and the effectiveness

of different measures to control it.

First, the model constituted the basis for the exploration of heterogeneity related aspects. As
highlighted by the available data, Q fever is characterised by a large heterogeneity both
between herds and between animals. It was already observed that some infected herds were
asymptomatic while others exhibited many abortions. Here, we showed that even for apparently
similar herds (i.e. chronically infected herds without any obvious clinical sign attributable to Q
fever), the infection dynamics was variable: intermittency of shedding was rare to usual
according to the herd; few herds were characterized by a low probability of infection and then
a slow bacterial spread, while others had a quite high probability of infection and then a faster
infection dynamics. This heterogeneity in probability of infection was linked to the
environmental bacterial load, which was variable between herds. In addition, within a herd, a
high variability in the shedding routes, duration and levels of shedder cows was suggested by
our data and also discussed in the literature. This heterogeneity of shedding was a key
mechanism in the infection process: the most influential parameters were shown to be the
probabilities governing the levels of shedding, especially for mucus/faeces shedders. Besides,
seronegative infectious animals (I-) and seropositive ones (I*) were shown to have different
patterns of shedding. I- shed on average for a shorter period of time than I+, more often in
mucus only and almost exclusively at low titres. I+ shed preferentially in milk only and quite

often at moderate or high titres. The fransition from one type of shedder o the other one was
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rare (i.e. in chronically infected herds, the transition probability from I-to I+was shown to be
very low). Due to this low estimated transition probability and to the high estimated transition
probability from I- to susceptible animals (S), the simulated humber of I- was higher than the
number of I+ especially in the first years of infection. This could partly explain why the
distribution of the levels of bacteria shed in mucus/faeces by the I- had a stronger impact on

the model outputs than the one shed in mucus/faeces by the I+

The parameters impacting the most the infection dynamics were also identified. Some
physiological parameters related to the intermittency of shedding (i.e. fransition probability
from seropositive non-shedders to seropositive shedders) or to the transition from one type of
shedder to another one (i.e. transition probability from seronegative shedders to seropositive
ones) played a non-negligible role. However, the most influential parameters were associated to
the probabilities governing the levels of shedding, especially for mucus/faeces shedders, as
already mentioned above, and to the characteristics of the bacterium in the environment (i.e.
proportion of bacteria shed through mucus/faeces reaching the environment and mortality rate
of C burnetii). Interventions impacting those key parameters would be of great interest.
Therefore, control measures leading to (i) a decrease in the quantities of bacteria shed,
especially in vaginal mucus and/or faeces, (ii) a decrease in the probability of shedding again for
an infected non-shedder animal or to (iii) a decrease in the life expectancy of . burnetii, could
be a priori effective control strategies. As vaccination and environmental measures (e.g.
increased cleaning and disinfection) are susceptible to respectively decrease the quantities of

bacteria shed and the life expectancy of the bacterium, they could be promising interventions.

The relative effectiveness of three vaccination strategies was determined in infected dairy
herds subject to at least three abortions in the previous year. Vaccinating cows and heifers for
three years only was ineffective in the long run. The probability of extinction of the infection
was low using this scheme. Thus, although the prevalence of shedders, the environmental
bacterial load, and the number of abortions decreased during the vaccination programme, they
increased again after the campaigh was ceased. In contrast, a 10-year vaccination period for
both cows and heifers allowed to considerably decrease the mean prevalence of shedders,
environmental bacterial load, and number of abortions and even to eradicate the infection in a
non-negligible number of cases. However, when only heifers (instead of cows and heifers) were
vaccinated at the beginning of this 10-year vaccination programme, the decrease was much
slower and it took about two additional years to reach the same level of shedders prevalence or

environmental load.
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II- Comments on the modelling approach, inference and

model analysis

1. Choice of the mathematical formalism

To represent the spread of € burnetii within a dairy cattle herd, we developed a stochastic
individual-based model in discrete time with a time step of one week. As the mean size of the
host population was low (around 50 cows), it was appropriate to consider a stochastic approach.
For each individual, all the transitions between health states as well as the determination of
the shedding routes and quantities of bacteria shed in the environment were supposed
stochastic. The individual-based scale was preferred in order to allow the estimation of
parameters of transitions between health states in the presence of bidirectional transitions.
Moreover, this representation enabled to consider the lactation and gestation cycle of cows,
which interfered with the epidemic process. As an example, the probability distributions of the
levels of shedding were variable with respect to the moment of calving. Therefore, an
individual-based model was an easy way to take into account interactions between demography
and epidemiology by recording the individual life history of each cow. A one-week time step was
chosen since no transition was assumed to occur in less than seven days. However, this choice
was driven by the data set configuration (in data set A, samplings are performed every week)
and it could be interesting to check this assumption by sampling cows, especially intermittent

shedders, every two or three days.

2. Choice of the model structure

The complete model we developed (i.e. the variant including heterogeneity related aspects) had

a SIR-like structure with three different kinds of I (I-, I+ and Itk Persy This model was
characterised by transitions in both directions between S and I- and between I+ and R (R
health state was called ¢+ in the model including the heterogeneity of shedding and ¢; in the
model including vaccination). Several issues were encountered. First, the S state comprised real
susceptible animals but also apparently susceptible animals: seronegative non-shedders which
were already infected became I- and went back to S. Although they were seronegative, the
latter could have developed a cell-mediated immunity response to C. burnetii which means that
they were not ndive to the infection anymore. The transition probability from S to I-is then a

mix between an infection probability and a re-infection probability. However, using the current
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diagnostic tests it was not possible to differentiate primary infected from re-infected animals.
Cell-mediated immunity tests (i.e. skin tests) are under development and would have been of

great interest to make this distinction.

We represented in the model two types of infectious animals, I- and I+ (considering I+and I~
milk pers q]| together) with two different shedding patterns. However, individual factors such as
age, genetics, immunity, or other management factors that might predispose a cow to fall into
one of these two categories are still unknown. When developing our model, we considered the
importance of the humoral immunity response, which was assumed to be the main differential
factor leading to the distinction between I- and I*. An additional difference between these
two infectious states was that when in the first one, an animal had the possibility to clear the
infection, while when in the second he stayed infected and alternated shedding and non
shedding episodes. When representing . burnetii spread in vaccinated herds, we had to define
in the model the type(s) of I for vaccinated and therefore seropositive animals. Two modeling
options were considered: (i) to still assume that the humoral immunity response was the
differential factor between the two types of I hence, all vaccinated animals have the I+
shedding pattern, or (ii) fo assume that the humoral immunity response was not the only factor
enabling the distinction between the two types of I two different shedding patterns could
exist in vaccinated animals t00'. In order to choose the “best” option, we looked for field data
on shedding routes distributions in vaccinated cows. In Guatteo et al [61], the shedding route
distribution of 18 cows, susceptible when vaccinated and monitored for the following one-year
period, was not significantly different from the one of I- or from the one of I* in non-
vaccinated herds. Thus, it was impossible to determine if the type of shedder could be
determined according to the humoral response, the time from infection or another factor.
Between the two modeling options, we finally chose the second one: although all vaccinated
animals were assumed seropositive, fwo types of I were assumed fo exist for vaccinated
animals and represented in the model (i.e. I; and I/;). Further studies are highly needed to
define (i) individual factors that determine the shedding pattern and then the type of shedder
(cell-mediated immunity tests could be useful for this part) and (ii) the impact of vaccination on

the shedding patterns.

Another option would be to define different types of shedders regardless of the presence or
absence of antibodies. We could also assume that infected individuals which succeed in clearing

the infection become resistant and do not get infected again. A new conceptual model could be

“we assumed in this case that one type of I, I; has a shedding pattern similar to I-, and that the
other one, I, is similar to I+
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proposed (Figure 5.1): this new version would have the advantage of distinguishing real
susceptible (S) from apparently susceptible (R) individuals. It would also match the opinion of
some experts who consider that humoral immunity response is not a key point of the infection
process. However, according to the data set A, we had no other choice when making inference
than gathering real and apparently susceptible individuals into a unique category and defining

classes of shedders based on their serological status.

R
i -
s =l [=>|L,[F=]C

Environment bacterial
load

Figure 5.1. Flow diagram representing a possible description of the spread of . burnetiiwithin a
cattle herd. The health states are: S, the real susceptible individuals, I;, the shedder cows which

are able to clear the infection, R, the resistant animals, I, , the chronically infected cows which
are shedding, and ¢, the chronically infected cows which are not shedding.

As a last element of the model structure, the route of C. burnetii transmission represented in
the model was the inhalation of bacteria from the environment. Based on current knowledge,
this infection route is the main one. However, if in the future, ticks, wildlife, or other
transmission pathways are shown to have a non-negligible role in the infection dynamics, the

model structure will need to be adapted.
3. Estimation of main epidemiological parameters

We used a Bayesian framework to estimate from field data the probabilities of transitions
between health states as well as the parameters linked to the shedding and survival of ¢
burnetii in the environment. This approach gave us the possibility (i) o deal with missing data,
(ii) to account for both previous knowledge about C burnetii (mainly concerning the life
expectancy of the bacteria in the environment and the proportions of different health states
within an infected herd), and (iii) fo take into account between-herd heterogeneity by
considering some transition parameters as herd dependent. The results of the estimation work

were satisfactory: for the large majority of parameters, a good convergence of the Monte
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Carlo Markov chains was achieved, the posterior distributions obtained were biologically

plausible, and the model was able to properly reproduce the observed data.

It would have been possible to take into account the uncertainty of observations in a different

way. In the Bayesian network we developed, the observed health state of cow /at time 7, O,

is a random qualitative nominal variable which can take the values S, I-, I+ or R, according to

the real health state of this cow at the same time, R(), and probabilities given by the

sensitivities and specificities of the diagnostic tests. More technically, this can be viewed as a
hidden Markov model, where the modelled system is assumed to be Markovian with hidden

(unobserved) states, here variables R,("). However, as discussed in section III.6 of chapter 2, a

possible way to more accurately account for the uncertainty of the observed health states is to
consider that this uncertainty would differ for each observation as a function of the
quantitative results provided by the diagnostic tests (Optical Densities for the ELISA and Ct
values for the PCR). Indeed, this would potentially increase the accuracy since probabilities
linking the hidden and observed layers would no more depend on sensitivities and specificities,
which are already averaged values over the whole population, but rather directly on individual
information. We could assume that the uncertainty on an observation is greater when the
quantitative test result is close to the positivity threshold than when it is far away. To
investigate this avenue, probability distributions of OD and Ct conditionally to the real health
state of individuals were modelled (Figure 5.2) and parameterized according to the ranges of
observed OD and Ct values and to the sensitivities and specificities of the diagnostic tests. As
an example, to determine the probability that a cow has a given value of OD knowing that it has
antibodies (green line of Figure 5.2.a), we first determined the range of observed OD values [-
70 to 630]. The ELISA had an assumed sensitivity of 85% and the positivity threshold was 40.
We assumed that the mode for the OD value for animals with antibodies is 190. The probability
distribution had therefore to fulfil two conditions: its mode had to be 190 and the area under
the curve for OD values above 40 had to represent 85% of the total area under the curve. In
this way, we determined the probability distribution parameters. During our thesis work, we did
not have enough time to further investigate this way of taking into account the uncertainty on

observations but it could represent an interesting extension.
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Probability distribution
Probability distribution

o T 100 _'-:'l 400 SO0 E00 0 20 / a0 B0 B 100
OD value OD value

Positivity threshold Positivity threshold
(OD>40) (OI¥)>40)

Figure 5.2 - a. Probability that a cow has a given value of Optical Density knowing that (i) it does not
have any antibodies (red line), (ii) it has antibodies (green line);
- b. Probability that a cow has a given value of Cycle threshold knowing that (i) it is not a shedder
(red line), (ii) it is a shedder (green line)

We could also wonder if all the epidemiological parameters of the complete model (i.e. model
including the shedding routes and levels developed in chapter 3) could have been estimated
from data set A in this Bayesian framework. In this case, more parameters would have to be
estimated and it is not sure that the convergence of the MCMC would be achieved, although
information about shedding routes and levels from data set A could be used. A compromise
would be perhaps to perform a sensitivity analysis on the complete model first, to fix its non-
influential parameters at their most plausible values (from the literature or based on expert

opinion), and then to only estimate model parameters influencing the infection dynamics.
4. Sensitivity analysis

To identify the parameters that mostly contributed to the model output variability, we
performed a sensitivity analysis considering 19 epidemiological parameters of the complete
model. We defined four levels per factor directly related to the heterogeneity of shedding and
two levels per other factors, and used fractional or complete fractional designs. As our model
was stochastic, we studied the variability of the mean and standard deviation of 30 model
repetitions for seven outputs of interest. This allowed to differentiate the variability due to
the inherent model stochasticity from the variability due to the variability in input factors, and
to focus only on the latter. Besides, the seven outputs of interest were dynamical and recorded
every week for a period of five years. Therefore, we first performed a PCA to summarize the

behaviour of the outputs over the whole simulated period and then an ANOVA to compute
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sensitivity indices. This approach developed by Lamboni et al. [84] was preferred to Sobol's
method and FAST which are also variance-based methods allowing the calculation of sensitivity
indices. In these methods, the range of variation of each factor has to be defined by a
continuous probability distribution. In our study, as some factors were not scalars but
probability distributions, it seemed difficult fo describe their range of variation in a continuous
way. Besides, for Sobol's method and FAST, model outputs have to be punctual and not
dynamical. Thus, the PCA followed by ANOVA method we used seemed better suited to our

needs.
5. Simulation of control strategies

In our work, we tested the relative effectiveness of three vaccination strategies in herds
characterized by at least three abortions in the last year. The modelling approach had the
major advantage that every parameter of the infection could be monitored over time. As an
example, the environmental bacterial load was recorded weekly during the control programme,
whereas this factor is not easily available in field studies. In addition, the model developed in
this thesis work is a flexible tool that can be easily adapted to explore other research
questions related to C burnetii spread and control. It would be possible to test additional
control strategies (e.g. environmental measures, specific culling, etc..) as well as the same
interventions but for different initial conditions (e.g. vaccination in non infected herds, in

herds after the 1°" abortion attributable to Q fever occurred, etc...).

III- Available and required data for model

conceptualization, inference and validation

A key aspect of our modelling work was the model elaboration and the estimation of its
parameters from field data. Data set A was of great value as 235 cows from five chronically
infected herds were sampled from one to five times over a one-month period. At each sampling
time, the serological status of the cow was determined as well as its shedding pattern (i.e.
shedding routes and levels) if the cow was shedding. This information allowed us to estimate
the parameters of transition between health states and to calibrate the representation of the
heterogeneity of shedding when incorporating the shedding routes and levels in the model.
However, this data came from infected herds without any obvious clinical sign attributable to
Q fever and was used to also describe the infection spread in herds assumed to experience

abortions due to Q fever. It would therefore be useful to collect data from herds exhibiting
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clinical signs in order to check whether their disease dynamics would be quite similar to the one

of herds without any visible sign.

Concerning the initial point of the infection, no data was available. It is likely that the
parameters of fransitions between health states at the very beginning of the pathogen spread
differ from those of infected herds where the bacterium has been present for a long time. As
an example, in this latter type of herds (i.e. chronically infected herds), the estimated value of
the transition probability from I-to I+ was almost nil, whereas they were many I+ cows. Hence,
we could imagine that, in the early stages of infection, some cows get infected, become I-and
then I#, during a relatively short time span. The probability of transition from I-to I+ would
therefore be probably higher in recently infected herds compared to chronically infected
herds, where almost no transitions between these two states are observed. In the field,
detection of the infection occurs late, because it is based on the occurrence of clinical signs.
Experimental studies are therefore the only way to monitor early stages of ¢ burnetii
infections. Such studies are logistically complex and costly as € burnetii has to be handled in
P3 laboratories. However, if conceived, they would allow determining the speed of the infection
spread at the beginning of the process and also to clarify the model parameterization. Specific
factors that could influence the individual response to €. burnetii and pattern of infection could
also be studied. As an example, the gestation status is an influential factor: pregnant goats
experimentally challenged with € burnetii are often seronegative and do not shed until they
abort or kid (H.J. Roest, personal communication). This kind of mechanism has not been
included in the model yet and further studies would therefore be highly needed to specify the

first stages of infection.

As previously mentioned, there would be a need of data about cell-mediated immunity: this
could help distinguishing the real from the apparently susceptible animals and the different
types of I individuals, and thus to update the model structure. This type of immunity was
indeed reported fo play a role in the clinical expression of . burnetii infection [73]. Moreover,
skin tests were recently used to determine the interest of an annual booster in vaccinated
cattle by assessing the level of different immune markers [133]. However, o our knowledge, no
study has investigated yet the possible link between cell-mediated immunity and shedding

pattern.

Another beneficial area of research would be the quantification of viable Coxiella in the
environment. It could help quantifying more accurately the model parameters directly related
to the environmental bacterial load (proportion of bacteria shed through mucus/faeces

reaching the environment and mortality rate of €. burnetii) and to check that the mathematical
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expression giving the probability of infection with respect to the environmental bacterial load
is appropriate. As previously explained (see section IV.1. of the introduction), current methods
monitoring the environmental bacterial load do not allow easily quantifying the risk of infection.
PCR on dust samples can be performed, but it is difficult to correlate the result of this test
with the environmental load of bacteria actually contributing to the infection. Indeed,
pathogens can be trapped in dust depositions, which decreases their availability and hence the
probability of airborne infection of cattle. Therefore, both the pathogen viability and the
probability of inhalation of the contaminated dust should be determined. A promising technique
is the PCR on air samples. The probability that £ burnetii could be inhaled has not to be
quantified as bacteria are already in suspension in the air. A protocol of air sampling in infected
dairy goat farms is currently led at the University of Utrecht (the Netherlands) jointly by the

Faculty of Veterinary Medicine and the Institute for Risk Assessment Sciences.

This work also highlighted a lack of knowledge on the effect of control strategies. Regarding
the vaccination, the relative risk of infection for animals vaccinated when susceptible and non-
pregnant was quantified [61]. Although its confidence interval was wide (i.e. 95%CI of 0.05-
0.90), this estimation guided the choice of numerical values for one of our model parameters.
However, the consequences of vaccination on shedding routes and levels have not been
evaluated yet. Also, no information is currently available on the consequences of environmental
measures on the viability of C burnetii in the farm. These knowledge gaps would need to be

filled in before optimal control strategies could be defined.

Model validation is a key step before using model predictions to guide public health decision
makers. Sensitivity analysis, model assumptions relevancy, and checking of the concordance
between model conclusions and expert opinions are part of the process. The main step consists
in confronting model outputs to independent data sets [163]. In our case, it was impossible to
perform this confrontation, especially for the environmental bacterial load since no additional
data was available. Nevertheless, we ran 100 repetitions of the complete model (i.e. including
shedding routes and levels) for a period of 5 years and compared the mean simulated
seroprevalence and prevalence of shedders for the last point of the time series with published
data. The concordance was satisfactory: the simulated seroprevalence was equal to 35% on
average (23.3% and 47.8% for the 25™ and 75™ percentiles) compared to 40% on average (25%
and 51% for the 25™ and 75™ percentiles) in 56 naturally infected French herds with abortions
due to Q fever [149]. The mean simulated prevalence of shedders was 35.5% (0 and 61.7% for
the percentiles 2.5™ and 97.5™) whereas in the field, the prevalence of shedders was 45.5%

for 242 cows from 31 naturally infected French herds with abortions due to Q fever [57] and

145



Chapter 5 : General discussion

38.9% in the 95 cows from three French asymptomatic dairy herds [131]. However, this data is
neither repeated over time, nor does it allow following the infection spread. It would have been
possible to split the data set A info two subsets (e.g. data from three herds on the one hand
and from the two other herds on the other hand). One subset would have been used to estimate
model parameters and the other to validate the model. Though, due to missing data, information
available in data set A was limited. Besides, as some estimated parameters were assumed to be

herd-dependent, the whole data set A had to be used for parameter estimation.

Currently, an 18-month follow-up of 100 naturally infected dairy cattle herds with abortions is
led in the west of France by the unit of Oniris-INRA "Bioaggression, Epidemiology and Risk
Analysis in Animal Health” (Nantes, France). The aim of this study is to assess the impact of
control strategies combining vaccination and/or antibiotherapy in field conditions. Criteria of
effectiveness include results of real-time PCR in bulk tank milk performed every three months.
One of four potential control strategies is implemented in each herd: (i) vaccination of heifers
only, (ii) vaccination of heifers and cows, (iii) antibiotherapy before calving and drying up, (iv)
vaccination of heifers and cows as well as antibiotherapy before calving and drying up.
Interventions (i) and (ii) correspond to two vaccination strategies that we simulated with our
model. It would then be possible to confront model outputs to these field data. Nevertheless,
as the correlation between the titre in bacteria in bulk milk samples and the prevalence of milk
shedders remains weak [58], the comparison between observed and simulated results seems

difficult.

IV- Implications and perspectives

The work that was carried out during my PhD has two types of immediate consequences. Firstly,
it highlights and helps to prioritize needs of research. As previously discussed, further studies
aiming at assessing the environmental load of viable bacteria, at describing the first stages of
the infection process, at determining the possible role of cell-mediated immunity in the
evolution of individual health states, and at quantifying the vaccine effect on the shedding
pattern would be of great value. Besides, identifying individual or environmental factors that
lead to super-shedding events, especially in vaginal mucus or faeces, would be a key milestone in
the understanding and control of the infection spread. Secondly, our work can guide farmers
and decision makers in the choice and design of control programmes for Q fever in cattle.
Vaccination is an effective way to decrease both the shedder prevalence and the environmental
bacterial load (under the assumption that effectively vaccinated animals shed in decreased

quantities). According to epidemiological considerations, both heifers and cows should be
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vaccinated, as administrating vaccines to heifers only is less effective: on average, to reach a
given level of shedder prevalence takes two additional years when vaccinating heifers only.
Performing a comparative analysis of cost-effectiveness between these two types of
vaccination strategies would be valuable for decision making. Even in presence of vaccination,
eradication of infection seems difficult and most of the time, takes several years. Therefore,
before stopping a vaccination programme, it is relevant to check for the absence of C. burnetii
within the herd. If some shedders are still present, it is likely that the infection will spread
again after the programme is stopped. PCR on bulk tank milk samples can be a way to perform
this verification. As shedding is intermittent and as its routes are not concomitant, this
diagnostic test would better be repeated over time. Other control measures, and especially
environmental ones, such as increased farm cleaning and disinfection, seem promising.
Decreasing the life time of . burnetii in the environment as well as the proportion of bacteria
reaching the environment (e.g. by rapidly destroying parturition or abortion products, by
increasing housing cleaning around calving, etc...) could strongly impact the environmental load.
The model we developed is an adaptable tool that would allow assessing the effectiveness of a
broad range of other control strategies in different initial situations. In the next years, it is

then crucial to regularly update this tool as new knowledge is produced.

Since small ruminants are often responsible for human infections, it seems relevant to adapt
our model to represent C. burnetii spread within sheep and goat flocks. The demography of
small ruminant populations differs from the one of cattle herds: kidding is most of the time
synchronised. Besides, flocks can be very large (several hundreds and even thousands of animals
per flock, as it is currently the case in the Netherlands). It would be interesting to determine
if the flock size and type of herd management have an influence on the infection dynamics and
to assess the effectiveness of control measures in this context. A collaborative work with the
University of Utrecht in the framework of Lenny Hogerwerf's PhD should answer these

questions soon.

As previously highlighted, Q fever is characterised by a large between-herd heterogeneity with
some asymptomatic infected herds, while others exhibit many abortions. This variability in the
occurrence and intensity of the clinical signs could be partly due to variability in C burnetii
strains involved in ruminants infections: in Arricau-Bouvery et al. [14], 36 different genotypes
were identified among the 42 isolates from livestock and ticks investigated. However, neither
the virulence of the different € burnetii strains nor possible interactions between them have

been investigated yet. If it would be shown that C. burnetii strains have different virulence or
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shedding characteristics or interact through cross-immunity, our model should be modified to

account for multi-strain dynamics.

Lastly, a next step in the understanding and control of £ burnetii spread would be the study of
the infection spread at the regional level. Likely, both cattle herds and small ruminant flocks on
a given area have to be represented in order to understand the global infection dynamics and to
evaluate the respective influence of herds and flocks on the infection risk. The role of
purchase of animals, wind, and neighbouring contacts on the spread of C burnetii between
animal populations has also to be determined. At last, the effectiveness of control measures at
a regional or national scale should be assessed, which would provide evidence for decision

making.
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Chapitre 1 : Introduction

Coxiella burnetii est une bactérie intracellulaire stricte responsable dune zoonose

mondialement répandue, la fievre Q. Le contréle de cette infection est un enjeu crucial :

e il s'agit tout d'abord d'un probléme de santé publique : bien qu'asymptomatique dans
plus de 60% des cas, la fievre Q peut entrdiner chez 'Homme des signes cliniques
graves tels que pneumonies, hépatites, endocardites ou avortements. Aux Pays-Bas, une
épidémie massive sévit depuis 2007 : plus de 3500 cas humains y ont déja été
confirmés. Les ruminants sont reconnus comme la principale source de contamination de
I'Homme : les animaux infectés excretent de grandes quantités de bactéries dans
I'environnement via les feces, l'urine, le lait et surtout les produits de parturition
(placenta notamment). € burnetii s'avérant trés résistante dans I'environnement, on la
retrouve soit sous forme d'aérosols soit dans la poussiere environnante. Ces deux

supports sont les principales sources d'infection pour I'Homme.

e |a fievre Q constitue également un probleme de santé animale : chez les ruminants,
cefte infection peut entrdiner des troubles de la reproduction tels qu'avortements,
métrites ou infertilité, engendrant des pertes économiques importantes pour les

élevages atteints.

Il appardit donc essentiel de lutter contre la propagation de C. burnetii dans les troupeaux de
ruminants domestiques afin d'améliorer les performances de ces élevages et de limiter le risque
zoonotique. Récemment, I'Agence Européenne de Sécurité des Aliments (EFSA) a souligné le
besoin, d'une part de quantifier les parameétres clés de l'infection, notamment les taux de
transmission (i) au sein des troupeaux de ruminants, (ii) entre ces troupeaux et (iii) des
populations animales a 'Homme, et d'autre part d'évaluer I'efficacité des stratégies de contréle.
Ce travail de these s'inscrit dans ce contexte général. Il a pour objectif d'améliorer la
compréhension de la propagation de ¢ burnetii au sein d'un troupeau bovin laitier afin de
proposer des stratégies de contrdle efficaces. Pour cela, hous avons développé une approche
par modélisation: pour des raisons éthiques, logistiques et financiéres, des études
observationnelles en troupeaux infectés ne peuvent pas €tre mises en ceuvre sur le long terme
afin d'étudier toutes les stratégies possibles de contréle de l'infection dans I'ensemble des
situations épidémiologiques possibles. Il nous a donc paru pertinent de développer un modéle
mathématique de la propagation de la bactérie permettant de suivre chaque paramétre de

I'infection et de comparer I'efficacité de différentes stratégies de mditrise ex ante.

Trois étapes de travail nous ont permis d'atteindre notre objectif. Un modéle représentant la

propagation de C. burnetii au sein d'un troupeau bovin laitier a tout d'abord été conceptualisé et
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ses principaux parametres épidémiologiques estimés a partir de données de terrain, en utilisant
une approche Bayésienne (chapitre 3). Il s'avére que ces données suggéraient |'existence d'une
forte hétérogénéité d'excrétion au sein des troupeaux infectés (les voies et durées d'excrétion
de méme que les concentrations en bactéries excrétées sont trés variables d'une vache a I'autre
et d'un moment & l'autre pour une méme vache) et que la présence d'hétérogénéité au sein d'une
population influence trés souvent les dynamiques d'infection. Nous avons donc décidé de
représenter explicitement dans une version plus compléte du modéle les voies d'excrétion et les
quantités de bactéries excrétées. Nous avons ensuite réalisé une analyse de sensibilité afin
d'identifier les paramétres dont la variation influengait le plus la dynamique d'infection
(chapitre 4). Enfin, nous avons représenté dans le modéle différentes stratégies de vaccination

et comparé leurs efficacités respectives par simulation (chapitre 5).

Chapitre 2 : Elaboration dun modéle de propagation de C. burnetii au sein dun
troupeau bovin laitier et estimation de ses paramétres principaux a partir de données

de terrain

La 1°" partie de ce chapitre décrit les principales étapes a suivre pour construire un modéle
épidémiologique et le confronter a des données de terrain. Nous nous focalisons dans une 2°™
partie sur le modéle développé pour représenter la propagation de C. burnetii au sein d'un
troupeau bovin. Comme les données de terrain sont essentielles a sa conceptualisation et a
I'inférence de ses paramétres, nous avons tout d'abord décrit le jeu de données que nous avons
utilisé. 235 vaches de cinq froupeaux naturellement infectés et ne présentant pas de signes
cliniques attribuables a C. burnetii ont été prélevées entre une et cing fois sur une période d'un
mois. A chaque temps de prélévement, un test sérologique ainsi que 3 tests PCR en temps réel
(un sur lait, un sur mucus vaginal et un sur féces) ont été réalisés. Il nous a donc été possible
de définir le statut vis-a-vis de l'infection de chaque vache a chaque pas de temps. Au total,
nous disposions pour 145 vaches de leur statut hebdomadaire et pour 89 autres, d'un a quatre
statuts au cours du mois d'étude. Nous présentons ensuite le modéle élaboré : il s'agit d'un
modeéle SIR (Sensibles-Infectieux-Retirés de la chdihe de transmission) modifié, caractérisé
par 2 classes de I (I-et I+ pour excréteurs séronégatifs et séropositifs respectivement) et
par des transitions dans les deux sens entre S et I- et entre I+ et R Etant donné que la
contamination d'un animal se fait par inhalation, la probabilité d'infection (transition de S a I-)
est supposée dépendre de la charge bactérienne dans I'environnement. Ce modéle est
stochastique, individu-centré et en temps discret avec un pas de temps d'une semaine. Enfin,
hous exposons dans la 3*™ partie de ce chapitre, I'estimation des paramétres épidémiologiques

de ce modéle a partir du jeu de données précédemment évoqué : une approche Bayésienne a été
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privilégiée car elle permettait de prendre en compte les connaissances disponibles a priori et
de gérer les données manquantes, ainsi que l'incertitude des observations due a I'imperfection
des tests diaghostics. Par l'utilisation d'algorithmes d'estimation par Chdines de Markov de
Monte-Carlo, nous avons obtenu les distributions a posteriori des probabilités de transitions
entre états de santé et de la charge bactérienne environnementale Les résultats ont montré
que certains froupeaux étaient caractérisés par un faible risque d'infection alors que pour
d'autres, ce risque, tout comme la probabilité d'excrétion intermittente étaient modérés. De
plus, les excréteurs séronégatifs (I-) excrétaient moins longtemps que les excréteurs

séropositifs (I+).

Chapitre 3 : Représentation de ['hétérogénéité d'excrétion dans le modéle de
propagation de C. burnetii et identification des paramétres influengant le plus la

dynamigue d'infection

La 1¥® partie de chapitre définit la notion d'hétérogénéité en population d'hétes : elle présente
I'impact de cette hétérogénéité sur la dynamique d'infection de nombreux pathogénes, ses
implications en termes de contréle et la maniere dont elle est prise en compte dans la
modélisation épidémiologique. La 2°™ partie se focalise sur I'hétérogénéité d'excrétion de ¢
burnetii en troupeaux bovins : la variabilité des voies d'excrétion et des concentrations de
bactéries excrétées observée dans le jeu de données, détaillé au chapitre 2 y est décrite. La
3™ partie du chapitre, rappelle les différentes méthodes d'analyse de sensibilité existantes
dans la littérature. L'analyse de sensibilité est en effet une étape cruciale du processus de
modélisation car elle permet lidentification des parameétres influengant majoritairement la
dynamique d'infection. Les paramétres identifiés revétent une double importance : ils doivent
2tre trés précisément estimés si I'on veut améliorer les capacités prédictives du modele et ils
sont les cibles & privilégier pour la définition de mesures de contréle efficaces. Enfin, la 4™
partie expose le modéle représentant la propagation intra troupeau de C. burnetii en incluant
I'hétérogénéité d'excrétion, et décrit I'analyse de sensibilité que nous avons employée. Pour
comparer l'influence des parameétres épidémiologiques sur différentes sorties temporelles du
modele, nous avons en effet effectué une Analyse en Composantes Principales (ACP) suivie
d'une ANOVA. Nous avons ainsi montré que les parametres les plus influents étaient les
distributions de probabilité gouvernant les quantités de bactéries excrétées, principalement
dans le mucus vaginal et les féces, les caractéristiques de C. burnetii dans |'environnement (i.e.
sa survie et la fraction de bactéries excrétées atteignant I'environnement) ainsi que les

caractéristiques physiologiques liées a I'intermittence de I'excrétion et a la transition d'un type

d'excréteur (I-) a l'autre (I+).
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Chapitre 4 : Comparaison de [efficacité de trois stratégies de vaccination en

troupeaux infectés

Dans la 1*® partie de ce chapitre, nous avons étudié quelques exemples de stratégies vaccinales
et la maniére dont elles sont représentées dans les modeles épidémiologiques de la littérature.
Dans la 2" partie, nous nous sommes intéressés a I'évaluation de l'efficacité relative de
différentes stratégies de vaccination contre C. burnetii en troupeaux bovins infectés. Trois
indicateurs temporels de la dynamique d'infection (i.e. prévalence en excréteurs, charge
bactérienne environnementale et nombre d'avortements) ainsi que la probabilité d'extinction de
I'infection ont en effet été simulés pour trois scénarii de vaccination ainsi qu'un scénario témoin
sans stratégie de contrdle. Pour tous les scénarii avec vaccination, les valeurs de ces trois
indicateurs ont baissé durant les premieres années du programme de vaccination. Cependant,
une vaccination d'une durée limitée (trois ans seulement) était souvent insuffisante pour
éradiquer l'infection : l'arrét du programme de vaccination entrdinait donc une reprise de la
propagation de l'infection. De plus, a la mise en place du programme, la vaccination des vaches
et des génisses était préférable a celle des génisses seulement. Dans ce dernier cas, les

indicateurs de la dynamique d'infection décroissaient plus lentement et le taux d'extinction de

I'infection était deux fois plus faible que lorsque vaches et génisses étaient vaccinées.
Chapitre 5 : Discussion générale

La 1° partie de ce chapitre reprend les résultats majeurs de cette thése : nous avons mis en
évidence une variabilité de la dynamique d'infection entre troupeaux a priori similaires (i.e.
troupeaux infectés par C. burnetii sans signes cliniques attribuables a la maladie) et une
variabilité de I'excrétion entre animaux. Nous avons de plus identifié les parametres
influengant le plus la dynamique d'infection et évalué I'efficacité relative de trois stratégies de
vaccination. Dans une 2°™ partie, nous présentons les avantages et limites de I'approche de
modélisation. La 3°™ partie discute des données disponibles et de celles qui seraient
nécessaires pour préciser la conceptualisation et la paramétrisation du modéle ainsi que sa
validation : la réponse immunitaire cellulaire des animaux, les premieres étapes de la
propagation de C. burnetii au sein d'un troupeau, ainsi que la viabilité et la quantification de la
bactérie dans I'environnement mériteraient en effet d'étre étudiées. Enfin, les implications et
les perspectives de cette thése sont énoncées dans la 4°™ partie de ce chapitre. En conclusion,
outre la premiére quantification des parameétres épidémiologiques de la propagation de C
burnetii dans un troupeau et de nouvelles interprétations des mécanismes impliqués, ce travail
fournit une aide d la priorisation des besoins de recherche et & la définition de mesures

efficaces pour contrdler la fievre Q en troupeaux bovins laitiers.

164



VU - : ' VU :

Le Directeur de Thése Le Responsable de PEcole Doctorale
Frangois Beaudeau

Ooltls 22 BINA
%eubmmah Nannmm B OEPAR
Vilarans Mgz ot e TAmroon
Aglanpole - La Chantrerie
BP 40705 — F 44307 NANTES Cadox 3

Vu pour autorisation de soutenance
Rennes, le
Le Président de I'Université de Rennes 1

Guy CATHELINEAU

VU aprés soutenance pour autorisation de publication :

Le Président du Jury




Abstract

Q fever is a worldwide zoonosis caused by Coxiella burnetii which induces reproductive
disorders in livestock. Ruminants are also recognized as the most important source of human
infection. Therefore, the control of this infection in cattle is crucial to limit both the infection
in livestock and the zoonotic risk. The objective of this thesis was to better understand the
natural course of the infection within dairy cattle herds in order to propose effective control
measures. A stochastic individual-based model in discrete time was conceptualised to
represent the C. burnetii spread within a dairy herd. Its main epidemiological parameters were
assessed from field data using a Bayesian approach. As a great heterogeneity between shedder
cows, known to impact infection dynamics, has been described, the shedding routes and levels
were explicitly represented in a variant of the first model. The most influential parameters of
the infection dynamics, identified through a sensitivity analysis, were the levels of shedding,
the characteristics of the bacterium in the environment and some physiological features of
cows. Lastly, the long-term effectiveness of three different vaccination strategies in reducing
the shedders prevalence, the number of abortions, the environmental bacterial load, and in
leading to infection extinction was tested by simulation. A 10-year vaccination programme for
both cows and heifers was found to be the most effective one. Besides providing a better
understanding of ¢ burnetii infection dynamics, this work can help prioritizing needs of
research and designing effective control programmes for Q fever in cattle.

Résumé

Y

La fievre Q est une zoonose mondialement répandue due a Coxiella burnetii. Elle peut
engendrer des froubles de la reproduction chez les ruminants. De plus, ces derniers
constituent la principale source d'infection pour I'Homme. Il est donc nécessaire de lutter
contre la propagation de C. burnetii en troupeaux bovins pour améliorer les performances de
ces élevages et limiter le risque zoonotique. L'objectif de cette thése a été de mieux
comprendre la propagation de l'infection au sein d'un troupeau bovin laitier, afin de mieux la
contréler. Un modéle épidémiologique stochastique, individu-centré et en temps discret
représentant la propagation intra-troupeau de C. burnetii a été développé. Ses paramétres ont
été estimés a partir de données de terrain en utilisant une approche Bayésienne. Une forte
hétérogénéité entre vaches excrétrices ayant été rapportée, les voies et niveaux d'excrétion
ont été explicitement représentés dans une variante du premier modéle. Les parametres
influengant le plus la dynamique d'infection, identifiés par une analyse de sensibilité, étaient les
niveaux d'excrétion, les caractéristiques de la bactérie dans I'environnement et certains traits
physiologiques des animaux. Enfin, trois stratégies de vaccination ont été représentées dans le
modele et leurs efficacités a long terme ont été comparées par simulation. La vaccination des
vaches et génisses pendant 10 ans s'est avérée la stratégie la plus efficace. En conclusion,
outre une meilleure compréhension de la dynamique d'infection, ce travail fournit une aide a la
priorisation des besoins de recherche et a la définition des mesures efficaces pour contréler la
fievre Q en froupeaux bovins laitiers.





