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Zoonoses are infections that are naturally transmitted between vertebrate animals and 

humans. Their importance is mainly linked to the danger they represent for humans. According 

to the World Health Organization (WHO), zoonoses strike down 14 million people around the 

world every year. At least 61% of all human pathogens are zoonotic, and have represented 75% 

of all emerging pathogens during the past decade [170]. Zoonotic diseases have always 

represented a risk for humans (e.g. rabies or anthrax are long-past known), but recent events, 

such as Bovine Spongiform Encephalopathy (BSE) or swine Influenza outbreaks, showed that 

major zoonotic diseases can have a huge economic and social impact and dominate the media 

headlines for some time. Moreover, zoonoses also prevent the efficient production of food of 

animal origin and create obstacles to international trade in animals and animal products.  

Recently, the European Commission was concerned about the increase within the EU in the 

number of cases of Q fever, a zoonosis due the bacterium Coxiella burnetii. Although Q fever 

has been present in cattle, sheep and goats holdings since a long time [107], human cases were 

sporadically reported until 2007 and the infection was seen as a rare occupational disease for 

farmers, veterinarians, and slaughterhouse workers [42]. However, in 2008, a total of 1,594 

confirmed cases were reported in the EU, mainly in the Netherlands and Germany, 

corresponding to a 165.5% increase compared with the number of confirmed cases reported in 

2007 [39]. In 2009, there were more than 2,300 human cases in the Netherlands, mainly in 

the form of atypical pneumonia. 19.7% of them were hospitalized [159].   

Q fever is essentially an airborne disease and human infection occurs mainly after inhalation 

of aerosols generated from excreta from infected livestock (abortion and birth material, 

faeces, urine, milk) [8]. In addition, in ruminants, reproductive disorders are frequent signs of 

infection [103] and can impact production and economic efficiency of the farm. Thereby, Q 

fever is an issue in both public and animal health. The control of this infection in ruminants is 

therefore crucial to limit the infection spread in livestock as well as the zoonotic risk. The 

European Food Safety Authority (EFSA) recently highlighted the need to objectively assess 

the relevant epidemiological parameters (such as rates of within-herd transmission, between-

herd spread and spillover from animal populations to humans) and the effectiveness of control 

options for C. burnetii infection in domestic ruminant populations [39]. Our work is in line with 

the EFSA opinion.  

We focused on dairy cattle and our aim was to better understand the within-herd pathogen 

spread in order to better control the infection. 
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I- Pathogen characteristics and host response to infection 

In 1935, Australian scientists worked to identify the cause of a febrile illness among abattoir 

workers in Brisbane while American scientists struggled to identify a novel microorganism they 

had isolated from ticks. Without knowing it, they were working on the same pathogen, C. 

burnetii, a small obligate intracellular bacterium classified in the γ-subdivision of 

Proteobacteria, in the order of Legionellales [107].  

Since its discovery, Q fever has been reported worldwide with the exception of New Zealand 

[56, 62]. The bacterium can infect a broad spectrum of hosts including domestic animals 

(livestock and pets), wildlife and even non-mammalian species including reptiles, fishes, birds 

and ticks. Infection occurs mainly after inhalation of contaminated aerosols. C. burnetii is 

extremely infectious: under experimental conditions, the inhalation of a single Coxiella cell can 

produce infection and clinical diseases in humans [150]. Within hosts, the bacterium resides 

within the phagolysosome of monocytes and macrophages. The organism may come in the form 

of a large cell variant (LCV), a small-cell variant (SCV), and a small dense cell (SDC). The LCV 

of C. burnetii is intracellular and metabolically active whereas the SDC and SCV forms are able 

to survive extracellularly as infectious particles [110]. The bacterium can then survive very 

well in the environment: up to 42 months at 4-6°C in milk, 12 to 16 months in wool, 120 days in 

dust, 49 days in dried urine and 30 days in dried sputum [115].  

Several typing methods have been used for the characterisation of C. burnetii strains. 

Restriction fragment length polymorphism (RFLP) and pulsed field gel electrophoresis (PFGE) 

were performed for the differentiation of 80 C. burnetii isolates derived from animals and 

humans in Europe, USA, Africa and Asia. This allowed the distinction of 20 different groups 

corresponding to the geographical origin of the isolate. However, no correlation between 

restriction group and virulence of isolates was detected [68]. More recently, two Polymerase 

Chain Reaction based (PCR-based) methods have been described to type C. burnetii, MLVA 

(multi-locus variable number of tandem repeats analysis) [14, 147] and multispacer sequence 

typing (MST) [55]. To date, these techniques are considered to be the most discriminating 

methods for C. burnetii, allowing the identification of up to 36 distinct genotypes. In the near 

future, these tools  will probably be very useful for epidemiological investigation, particularly 

to clarify linkages regarding the source of infection [39]. 

Cell-mediated immunity probably plays the critical role in eliminating C. burnetii [8]. According 

to Read et al. [129], the presence of either CD4+ or CD8+ T cells was sufficient to control 

infection in mice, and B cells were not necessary for primary immunity. However, other studies 
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suggested that both humoral and cell-mediated immune responses were important for host 

defense against C. burnetii infection: treatment of C. burnetii with immune sera was reported 

to make the bacterium more susceptible to phagocytosis and destruction by normal 

polymorphonuclear leukocytes or macrophages [171].  Moreover, C. burnetii exists in two 

antigenic phases called phase I and phase II.  This phase variation phenomenon is similar to 

the smooth to rough lipopolysaccharide transition of other Gram-negative bacteria [12]. This 

antigenic difference is important in diagnosis in humans.  

 

II- Q fever in Humans 

1. Routes of transmission to humans 

Airborne transmission of C. burnetii through inhalation of aerosolised bacteria or 

contaminated droplets and dust is the principal mode of transmission to humans [8]. Indeed, 

infected animals shed bacteria into the environment through faeces, vaginal mucus, urine, milk 

and especially parturition products [11, 20, 59]. Goats, sheep and cattle are recognized as the 

main source of human infection [96, 109, 142, 164] although dogs and cats can sometimes be 

involved in the transmission to humans [29, 124]. As C. burnetii survives very well in the 

environment, the bacterium contaminates aerosols and surrounding dust [167]. Moreover, wind 

plays a role in C. burnetii transmission: in France, a statistically higher incidence of human 

cases was associated with an increased frequency of the mistral one month before the onset 

of the disease [151]. In the literature, estimates regarding the distance that infectious 

particles can spread by air span a large range: from 400m up to 40 km, depending on the 

studies [38]. A recent study showed that, during the Dutch epidemics, persons living within 2 

kilometres of an affected dairy goat farm had a much higher risk for Q-fever than those 

living more than 5 kilometres away [142]. Some environmental factors, soil moisture or 

vegetation density can also play a role in C. burnetii transmission [67]. 

Consumption of raw milk could be a source of infection [107]. However, according to the EFSA 

Panel on Biological Hazards, drinking milk containing C. burnetii can result in seroconversion but 

it remains unclear whether, and if so, to what extent, clinical disease can result from the 

consumption of milk or diary products, or of other foods containing C. burnetii [39]. Besides, 

the French Agency for Food Safety estimated that in case of human contamination by 

consumption of raw milk, the gross risk was to ‘nil to negligible’ [2].  
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Other transmission routes appear rare. Ticks can be naturally infected with C. burnetii, but 

they do not appear to be important in the maintenance of infections in humans [107]. Person-

to-person or sexual transmissions are anecdotal [8, 112]. 

2. Clinical manifestations 

Q fever is characterised by a clinical polymorphism and a frequently asymptomatic expression. 

Men are more often symptomatic than women, despite comparable exposure and 

seroprevalence, as well as people over 15 years compared to children [100, 152]. After an 

incubation period of approximately 20 days, the infection leads in around 40% of cases to an 

acute Q fever (Figure 1.1). The acute disease frequently includes fever, headaches, myalgias, 

arthralgias and cough [110]. Other manifestations are pneumonia, hepatitis, myocarditis, skin 

rash and neurologic signs [8, 128]. In acute cases of Q fever, the antibody level to phase II 

antigens is usually higher than the one of phase I, often by several orders of magnitude. In 

chronic disease, the reverse situation is observed. 

Chronic Q fever may develop, many months to years after infection, in at-risk patients, i.e. 

patients with heart valve or vascular diseases or patients with cancer or immunosuppression. 

This chronic form appears in some 2% of acute symptomatic cases and the fatality rate may 

vary from 5 to 50% [38]. The most frequent manifestations are endocarditis and vascular 

infections but fever, loss of consciousness, weight loss, general fatigue, night sweats and 

hepatomegaly may also be present [168].  

  

Figure 1.1. Q fever natural history in humans in the absence of treatment  
(from Angelakis & Raoult [8]) 
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In addition, when a pregnant women is infected by C. burnetii during pregnancy, there is a risk 

of abortion, preterm delivery or low birth weight [8].   

3. Magnitude and distribution of human Q fever in the 

European Union 

Q fever in humans is a communicable disease for which surveillance is mandatory in the EU. In 

2007, 637 confirmed cases were reported to the European Centre for Disease Prevention and 

Control (ECDC), mainly in the Netherlands (168 cases), Spain (159 cases), Slovenia (93 cases), 

Germany (83 cases) and Bulgaria (36 cases). In 2008 and 2009, respectively 1,011 and 2,357 

confirmed cases were reported in the Netherlands [39]. The months with the highest number 

of reported cases were July and August.   

According to this spreading pattern, the EFSA concluded that human Q fever can be 

considered as a relatively infrequent clinical disease and that there is no obvious increase in 

the general disease risk [39]. However, human cases are likely to be underreported and the Q 

fever epidemic in the Netherlands has shown some divergence from the epidemic 

characteristics described until now: the infection persists over consecutive years and has 

sickened mainly people who never had contact with animals. The drivers of such an outbreak 

remain unclear. The epidemic could be caused by a more virulent strain of C. burnetii [42] or by 

changes of farm characteristics. According to the EFSA, most of the human Dutch Q fever 

cases are indeed linked to abortion in large dairy goats farms, and to a much lesser extent in 

dairy sheep farms [39].  

 

III- Q fever in domestic ruminants 

1. Modes of contamination 

Inhalation of contaminated aerosols is the main route of infection for ruminants. Transmission 

by ticks is also possible: the bacterium was isolated in several tick species [63, 111, 154]. 

However, the importance of this mode of contamination has not been determined. In the same 

way, the contamination by ingestion of an infected placenta has, to our knowledge, not been 

evaluated yet. Although mice were found 10,000 times less susceptible to the infection when 

orally infected than when intraperitoneally infected [37], cats and dogs may be infected by 

the consumption of placentas [107]. Consequently, further studies are needed to quantify the 
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importance of this mode of contamination for ruminants. As viable C. burnetii were detected in 

the semen of bulls, sexual transmission of the bacterium between cattle should be possible 

[81], but the role of this route of transmission within a herd has not been explored until now. 

Lastly, C. burnetii infection has been reported in wild mammals (especially rats [166]) and birds 

which could represent a reservoir for C. burnetii infections.  

2. Clinical manifestations 

Most of the C. burnetii infected animals remain asymptomatic but reproduction disorders can 

occur [103]. In Plommet et al. [125], amongst eleven heifers inoculated by the intradermal 

route then inseminated, five aborted or remained sterile. Indeed, as the female uterus and 

mammary glands are primary sites of chronic infection [107], C. burnetii infection can induce 

abortions, stillbirth and delivery of weak lambs, calves and kids. In the majority of cases, 

abortion occurs at the end of gestation without specific clinical signs appearing before [12]. 

High abortion rates can be observed in some goat flocks [120, 135]. In cattle, metritis is 

frequently the unique manifestation of the disease [19, 153]. Aborting females recover rapidly 

and generally do not abort during the following gestations, while metritis can persist for 

several months [12]. Pneumonia and endocarditis are not described in animals except in 

experimental conditions. In Plommet et al. [125], all inoculated heifers developed a pneumonia 

24 to 36 hours after the inoculation and 50% of the animals presented cardiac symptoms or 

pulmonary lesions in the months following the infection [125].  

3. Characteristics of the bacterial shedding 

C. burnetii infection in ruminants often becomes chronic, with persistent bacterium shedding: 

cows can shed C. burnetii for several months [59] and goats at successive parturitions [23]. 

This shedding is of major importance as it contaminates the environment and can lead to the 

infection of both susceptible animals and humans. For cows, ewes and goats, Rodolakis et al. 

[131] reported that, contrary to expectation, the shedding of C. burnetii could be not related 

to parturition. In C. burnetii infections, a great heterogeneity between shedders has been 

described [11, 37, 57, 131]: the shedding duration, level (i.e. the quantities of bacteria shed) 

and routes are variable between animals. Infected animals can indeed shed bacteria through 

birth products, vaginal mucus, faeces, and milk [132]. Amongst the three latter, no 

predominant route was identified in 242 dairy cows from 31 herds in which abortions due to C. 

burnetii were reported [57]. Besides, in the same study, 65% of the shedder cows shed by 

only one route. However, in asymptomatic herds, cows shed more frequently in milk than in 

vaginal mucus or faeces [59, 131]. The shedding duration and shedding levels are also variable 
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between animals: cows can shed from a sporadic to a three-month persistent way and the 

concentrations of bacteria shed in vaginal mucus or milk can vary from less than 100 

bacteria/g to more than 1,000,000 b/g [59]. Although the presence of heavy shedder cows 

(i.e. animals shedding bacteria in higher titres and in a persistent way) was reported in milk 

[59], the role of these animals in C. burnetii transmission between animals and from animals to 

humans has not been determined yet. In goats and ewes, the same shedding routes are 

described and in the same way, are rarely concomitant [135]. Ewes were found to shed mostly 

in faeces and vaginal mucus [131] while goats were reported to shed mainly in milk and vaginal 

mucus [11, 131, 135].  

The presence of heterogeneity in a population (e.g. variability in age, contact structure, 

infectiousness, etc…) is known to affect infection dynamics in many diseases. As an example, a 

model assuming that all farms and all animals are governed by the same underlying dynamics 

was unable to explain the highly overdispersed distribution of prevalences of Escherichia coli 

O157 shedding on Scottish farms [106]. The best fit to the prevalence data was obtained 

when incorporating individual variability in transmission. In many cases, the heterogeneity of 

shedding has indeed a great impact on both the infection dynamics and the effectiveness of 

control measures: in dairy cattle infected by Salmonella, the presence of host heterogeneity in 

infectious period and contagiousness decreased the effectiveness of population-wide control 

strategies, making necessary the application of strategies targeting the most contagious 

animals [86]. For C. burnetii infections, the influence of this heterogeneity of shedding on the 

infection spread has not been evaluated yet. Hence, it is necessary to take into account the 

variability of the shedding duration, shedding levels and shedding routes in our epidemic model 

when representing C. burnetii spread and testing effectiveness of control strategies.  

4. Diagnosis 

Currently, the PCR is a sensitive and rapid mean to directly detect C. burnetii and therefore to 

identify the shedders [39]. This technique can be used on a wide range of samples (vaginal 

mucus, abortion material, faeces and milk). Real-time PCR is preferable to conventional PCR as 

it allows high sample throughput [122] and the quantification of the bacterium in the sample. 

As an example, a real-time PCR assay applied to bulk tank milk samples appears to be a valuable 

tool to assess on a larger scale the status of herds towards C. burnetii shedding [58]. 

Quantitative PCR kits are now commercially available. Moreover, although 

immunohistochemistry was until now useful when considering potential causes of abortions in 
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ruminants, multiplex PCR that can detect and differentiate between different abortive 

pathogens is now under development [24].  

For the serological testing, the complement fixation (CFT) was considered the reference test 

for historical reasons [39]. However, the indirect immunofluorescence assay (IFA) and above 

all, ELISA, are now widely used. According to Kittelberger et al. [79], two commercial ELISA 

were more sensitive than the CFT in all panels from infected ruminants: their sensitivities 

were 81% for the Pourquier ELISA and  95% for the IDEXX ELISA. However, none of the 

tests are able to distinguish between acute and chronic infection or between vaccinated and 

naturally infected animals. Besides, a serological test does not give clear information about the 

individual infection status [39]: some infected animals are indeed seronegative while they are 

shedding.  

5. Magnitude and distribution in the European Union 

There are currently no EU rules about the notification and surveillance of C. burnetii infection 

and/or Q fever in domestic ruminants. Based on available data [39], C. burnetii is present in 

most, if not all, member states. It does not appear to be an increase in Q fever 

prevalence/incidence but comparison over time and between countries is problematic as there 

are considerable differences in testing protocol and data availability. In Gran Canaria island 

(Spain), 34.7% of 1,249 randomly selected ruminants (60.4% of goats, 31.7% of sheep and 

12.2% of cattle) were reported seropositive using an indirect ELISA kit [134]. In northern 

Spain, a serosurvey was carried out in 1,379 sheep (42 flocks), 626 beef cattle (46 herds) and 

115 goats (11 herds) [138]: ELISA anti-C. burnetii antibody prevalence was slightly higher in 

sheep (11.8 ± 2.0%) than in goats (8.7 ± 5.9%) and beef cattle (6.7 ± 2.0%); herd prevalence 

was 74% for ovine flocks, 45% for goat flocks and 43% for cattle. In Denmark, a study based 

on bulk tank milk samples from 100 randomly selected dairy herds demonstrated a prevalence 

of 59% antibody positive herds [3].  

6. Control 

In France, in infected herds, interventions against Q fever mainly consist in environmental 

measures such as destruction of placentas or disinfection of births locations, and in medical 

measures such as antibiotic treatment like injections of tetracyclines during the last month of 

gestation and vaccination [132].  

As placentas and aborted foetuses contain high numbers of C. burnetii, births should 

preferentially take place in a specific location which can easily be disinfected and risk material 
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(placentas and aborted foetuses) should be collected and removed to specific rendering plants 

[2]. Moreover, the manure can be a potential vector of the infection [21], although exact levels 

of C. burnetii in manure have not been accurately determined yet. Either chemical [9] or heat 

treatment can be used to reduce the load of viable bacteria [39]. Tick control may also play a 

role in the transmission of the infection. 

Observations concerning antibiotics are contradictory. In Berri et al. [22], oxytetracycline was 

administered in a flock of sheep after a Q fever episode but did not prevent further abortions 

and did not immediately suppress the shedding of the bacteria. However, this treatment may 

have affected the ewes in the long term, and prevented further spread of the infection to 

ewes and lambs. In Astobiza et al. [16], the oxytetracycline treatment neither prevented the 

shedding of bacteria nor limited the duration of bacterial excretion. The EFSA concluded 

that, although antibiotic treatment is used effectively in humans to reduce clinical symptoms 

associated with Q fever, the same treatment in animals is not effective in reducing neither 

the level nor the duration of C. burnetii shedding and should be avoided [39]. 

According to Rodolakis et al. [132], vaccination is an efficient tool to control the disease. 

Vaccination with an antigenic phase I vaccine in cattle was shown to suppress the shedding in 

milk, placenta and colostrum [25, 139]. More recently, Arricau-Bouvery et al. [13] compared 

the efficiency of phase I and phase II vaccines in goats: the phase I vaccine prevented 

abortions and dramatically reduced the frequency of bacteria shedding in the milk, vaginal 

mucus and faeces while the phase II vaccine did not affect the course of infection. Thus, 

phase I vaccines are much more effective than phase II vaccines. In Rousset et al. [136], the 

vaccine appeared neither able to prevent infection in exposed kids, nor to clear infection in 

infected goats, but was effective in reducing the level of shedding in a heavily infected herd. 

In fact, preventive vaccination (before infection) is much more effective than outbreak 

vaccination [39]. According to Guatteo et al. [61], a susceptible non pregnant cow had a five 

times lower probability of becoming a shedder than an animal receiving placebo. Vaccination 

seems a long-term control strategy but field and experimental data are needed to improve our 

understanding of the infection spread in and between infected vaccinated populations [39]. 

Other control options can be used in emergency situations when public health is at risk. Culling 

of pregnant animals, temporary breeding ban or control of animal movements are some of the 

measures implemented in the Netherlands during the current outbreak [39].  
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IV- Why a modelling approach to understand C. burnetii 

infection and assess control strategies? 

1. Why not field observations? 

To assess the effectiveness of control strategies within a herd, different approaches are 

available. Impacts of the control measures can be directly observed in the field. However, the 

spread of C. burnetii within a herd results in a complex process. The infection of susceptible 

animals is linked to the contamination of the environment, and therefore to the shedding of 

bacteria. There are different types of shedders (e.g. seronegative versus seropositive ones), 

and a same type of shedders shed by different shedding routes, for a variable duration and in 

variable quantities. Follow up the shedding within a herd is unfeasible on the long run. 

Moreover, if the aim is to compare different types of control strategies, such a follow-up 

would have to be performed in a high number of herds for a long period of time. A solution to 

monitor over time the spread of C. burnetii within a herd would be the use of a diagnostic test 

at the herd level. However, at the present time, although a real-time PCR applied to bulk tank 

milk samples is a valuable tool to assess the status of herds towards C. burnetii infection [60], 

there is no clear correlation between a positive result and either the prevalence of shedders 

in the herd or the environmental bacterial load. The direct monitoring of the environment is  

therefore of great interest. Recently in the USA, Kersh et al. [78] collected 1,600 

environmental samples (mainly soil and dust on solid surfaces) and performed quantitative PCR. 

23.8% of the samples analyzed were positive for C. burnetii DNA, and the locations that 

contained C. burnetii DNA were diverse: unsurprisingly dairy farms, cattle feed lots, 

veterinary hospitals, and goat-breeding facilities but also high schools, retail stores, grocery 

stores, football stadiums, banks, and post offices. Most of the samples analyzed had a fairly 

low number of bacteria detected but 10% of samples were much more contaminated. However, 

it is difficult to directly assess the viability of the bacteria in these samples: if the soil or 

dust sample is directly placed onto cultured host cells, the culture will be contaminated by a 

variety of microbes present in the sample. Viability is best determined by injection of 

environmental materials into mice but this test cannot be easily used in routine because of its 

cost and its logistical constraints. Thus, current methods monitoring the environmental 

bacterial load allow neither easily determining the risk of infection for susceptible individuals 

nor following the infection spread. A modelling approach seems then relevant when studying C. 

burnetii spread: the more complex a phenomenon is, or the more expensive and difficult it is to 

study, the more value there is to explore models [163].  
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2. Roles of epidemiological modelling 

A model is a simplified representation of a complex phenomenon. By definition, all the models 

are “wrong” because they make simplifying assumptions [77]. However, modelling is an essential 

tool, particularly useful every time a major public health issue is raised. As an example, the 

infection by the Human Immunodeficiency Virus started being perceived in a different way 

when biomathematicians showed that observed data were compatible with the assumption that 

100% of infected people develop the disease. Before, as only a small part of seropositive 

people showed clinical signs, the asymptomatic seropositive people were considered as healthy 

carriers [158].  

In epidemiology, models have different roles. Prediction is the most obvious one and often 

aims at guiding policy decisions [77]. For quantitative prediction purposes, the model has to be 

accurate and validated (i.e. with the smallest uncertainty which could impact the conclusions). 

This objective is most of the time difficult to reach. When a new infection is introduced in a 

former susceptible area, no historical data are available. In addition, an epidemic reference 

situation in the absence of control measure or with a perfectly known control programme is 

rarely recorded, especially for animal infectious diseases [45]. Thus, most of the time, 

although models used to evaluate control strategies are sophisticated and parameter-rich, 

model conclusions are not quantitative. However, qualitative outputs are enough for a large 

range of purposes and especially for the comparison of different scenarios (e.g. spread of an 

infection in different regions, for different pathogen strains, for different control measures, 

etc…). A model also helps understanding how an infectious disease spreads in the real world 

[77]. It provides the modeller a virtual world in which everything can be recorded and every 

factor can be examined. For example, it is possible to explore the effects of variable numbers 

of partners on the spread of sexually transmitted diseases or the effects of neighbourhood 

contacts or animal purchases on the spread of livestock diseases. Besides, a model can allow 

estimating non observable parameters. For instance, some events can be very rare in the real 

world but have major consequences in public health. Their frequency has then to be assessed 

but this is hardly feasible through field observations. As an example, the residual risk of HIV 

infection through blood transfusion is now very low. It is unfeasible to assess by a comparative 

experiment the potential benefit of an additional prevention strategy. Instead, a model can be 

used to estimate this infection risk and simulate control scenarios [158]. Although estimation 

of parameters can be considered as a role in itself, it also helps understanding the infection 

process and is a prerequisite for prediction purposes. At last, modelling allows highlighting 

gaps of knowledge: to develop models, modellers need quantitative data whereas most of the 
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time, only qualitative data is available in the literature or known by experts. Models are then a 

mean to critically evaluate the range of information available on the modelled system.  

It has to be highlighted that modelling and field or experimental work are complementary 

approaches (Figure 1.2). On one hand, as we will see later, data is required to conceptualize the 

model, estimate the value of parameters and validate the model. On the other hand, models 

help testing biological assumptions, optimizing experiments protocols or identifying gaps of 

knowledge.  

 

Figure 1.2. Mutual input of biology and modelling (from Ezanno et al. [45]) 

 

3. An example of epidemiological model in animal 

health 

In livestock, epidemic models have been developed for various infectious diseases such as 

tuberculosis [71], brucellosis [40], BSE [6], Bovine Viral Diarrhoea [162], Escherichia coli 

infections [90, 157, 172], Salmonella infections [85], paratuberculosis [101], Contagious Bovine 

Pleuropneumonia [102], bluetongue [148] or foot-and-mouth disease [76]. 

A well-known example of mathematical model in domestic ruminants is the approach developed 

by Keeling et al. [74] representing the 2001 foot-and-mouth disease (FMD) outbreak. The aim 

of this study was to understand how spatial and individual heterogeneities influenced the 

course of the epidemic and to compare different vaccination and culling scenarios. The FMD 

outbreak was characterised by both a high probability of local spread and less frequent 
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longer-range transmission due to fomites and personnel movements. There was additional 

heterogeneity in farm size and species composition. In the model, the susceptibility and 

infectiousness of a farm were assumed varying according to its size and species composition. 

The model was fit to data, and a good agreement was obtained. It is worthy that the inclusion 

of the host species and herd-size heterogeneities in transmission were required to reach this 

good agreement and to properly simulate the spatial aggregation of cases. Large farms, and 

especially cattle ones, were indeed found to have a key role in the infection spread. Modeling 

demonstrated that culling infected farms, their direct contacts and contiguous farms was 

much more effective in reducing both the number of cases and the total number of culled 

farms than culling infected farms only. The delay from infection report to culling was also an 

important factor influencing the effectiveness of the control measures. Moreover, Keeling et 

al. considered the potential impact of both reactive and prophylactic vaccination on future 

FMD epidemics in the United Kingdom [75]. Mass prophylactic vaccination campaign could 

reduce the size and duration of the epidemic and vaccinating above 80,000 farms (over the 

100,000 cattle farms in the UK) would even prevent almost all major epidemics. In addition, at 

the start of an outbreak, mass reactive vaccination, in combination with culling and animal 

movements restrictions might also control ongoing epidemics. On the contrary, ring vaccination 

would have a limited effectiveness.  

This example shows (i) how important is to take into account the presence of host 

heterogeneity in a population, and (ii) how models can help understanding the course of the 

infection and guide decisions makers. From a practical point of view, this model played an 

important role in the formulation of the DEFRA’s (Department of Environment, Food and Rural 

Affairs of the United Kingdom) contingency plan published in 2004 [77]. However, before 

model conclusions can inform policy, economical, sociological and logistical constraints have to 

be taken into account [75]. For example, farmers will have to be sure that vaccination will not 

devalue or limit the sale of their stock, or that they will get compensation. Besides, as 

vaccination will undoubtedly suppress clinical disease but not always infection, careful 

surveillance will therefore be required. Thus, model results have to be set back in the real 

world before being used for decision purposes. At last, this model was based on extensive data 

of a single epidemic. For an outbreak with a different strain (i.e. with different transmission 

properties and host specificities) or for an outbreak in another location (i.e. with different 

farming practices or weather conditions), the model will have to be adapted to the new 

situation before conclusions could be drawn from its outputs.  
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V- Objective and outline of the thesis 

Because of the zoonotic risk induced by C. burnetii infections and their economic impact, there 

is a need to design effective control measures against C. burnetii spread in cattle. The general 

objective of this thesis is to develop a model representing the spread of C. burnetii within a 

dairy cattle herd in order to better understand the natural course of infection and to 

enlighten decision makers on the effectiveness of control measures. To provide a 

comprehensive description of the infection dynamics, we first aimed at estimating the main 

epidemiological parameters and then at identifying those that have the strongest impact on 

the disease spread pattern. When focusing on control measures, we aimed at comparing the 

effectiveness of different vaccination strategies in infected herds. Moreover, the 

identification of influencing parameters performed in the second part of our work could help 

to propose other potentially effective control strategies specifically impacting these key 

parameters of the disease spread.  

Our general objective was reached in three stages (Figure 1.3). We first designed a model 

representing C. burnetii spread within a dairy herd and assessed its main epidemiological 

parameters from field data in a Bayesian framework. Secondly, as a great heterogeneity 

between C. burnetii shedders with a potential impact on the infection dynamics has been 

described, we chose to explicitly represent in our model the shedding routes and levels. We 

then performed a sensitivity analysis in order to identify the parameters, and especially those 

related to the heterogeneity of shedding, whose variation highly influences the infection 

dynamics. Lastly, we represented in the model different vaccination strategies and tested 

their comparative effectiveness by simulation. 

Chapter 2 of the thesis first explains the main steps to set up a model. It then describes the 

field data we used to conceptualize the C. burnetii model and infer its parameters. The data 

set consists of individual health states of 235 cows of five chronically infected dairy herds 

sampled from one to five times over a four-week period. The stochastic individual-based model 

in discrete time we developed to represent the evolution of C. burnetii infection, as well as the 

Markov chain Monte Carlo methodology we used to estimate the parameters of interest are 

then presented.  

Chapter 3 first details the importance of heterogeneity in a host population when studying an 

infection dynamics. It then describes the way the individual variability of the shedding 

duration, routes and levels were represented in the model. General aims and methods in 

sensitivity analysis are afterwards presented. Lastly, the approach based on a Principal 
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Component Analysis followed by an ANOVA that we performed is explained and the influence 

of the different epidemiological parameters on the model outputs is detailed. 

Chapter 4 presents different ways to include vaccination in an epidemic model. It then 

describes how we adapted our dynamical model previously developed to simulate the impact of 

three different vaccination strategies (vaccination of both cows and heifers for 10 years, 

vaccination of heifers only for 10 years or vaccination of both cows and heifers for 3 years) on 

the infection dynamics and presents our results. 

Finally, chapter 5 provides a general discussion on the PhD project. It presents the main 

results related to this thesis objectives and their potential field application. The modelling 

approach chosen is also discussed. Lastly, a few potential future directions are presented. 
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In the first section of this chapter, the main steps of the construction of a model and its 

confrontation to data will be described. Secondly, we will present the model we developed to 

represent the within herd C. burnetii spread. As both model conceptualization and parameter 

assessment depend on field data, we will first describe the data we used. Then, we will 

justify the model structure and formalism that we chose. At last, the main part of this 

chapter will be presented as it was published in the Proceedings of the Royal Society B [35]. 

It deals with the assessment of the main epidemiologic parameters involved in the dynamics 

of within herd C. burnetii spread from field data using a Bayesian approach.  

 

I- Some generalities on how to build a model and to 

confront it to data 

1. Choice of the model structure 

The first step when developing a model for the spread of an infectious disease is to choose 

its structure: the different health states and transitions between them have to be defined. 

This backbone should reflect the natural history of the infection. If the population is not 

homogeneous with respect to the disease, the main categories in the population itself have 

also to be specified: according to Diekmann & Heesterbeek [36], the state of an individual is 

the set of information about the individual that is relevant to determine its future 

behaviour. It comprises its health state as well as other characteristics (such as age, genetic 

composition, stage of development, etc…) that may impact the infection dynamics. Classically, 

the health states considered are S, susceptible, and I, infectious. This SI model can be used 

for diseases like HIV: an individual is infectious as soon as infected, and for its whole life. 

An SIS structure is used for curable diseases: infected individuals are infectious until they 

are treated or recover and become susceptible again [163]. If there is a non negligible delay 

between the infection and the infectiousness, the health state E, exposed, can be added. 

Moreover, if individuals are immune to further infection after they have been infected, they 

enter the health state R, recovered. SIR and SEIR are standard model structures (Figure 

2.1).  
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Figure 2.1. Structure of SIR and SEIR models 

It has to highlight that the different phases of clinical and infection dynamics do not occur 

simultaneously (Figure 2.2). However, they are sometimes not distinguished in mathematical 

models (e.g., symptomatic and infectious periods are considered identical).  
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Figure 2.2. Individual infection status vs. clinical status in a simplified infection process  
(adapted from Keeling and Rohani [77] and Ezanno et al. [45]). 

 

Depending on the disease, other health states and transitions can be specified: as an 

example, in some paratuberculosis models [101], health states T, transiently infectious, IS_low, 

subclinically infected low shedder, IS_high, subclinically infected high shedder or IC, clinically 

affected, are represented. The definition of health states and their associated transitions 

is mostly based on the biology of the pathogen, host immune response and available data. The 

classic SIR structure can then be modified to obtain more sophisticated variants. In 

addition, the research question strongly determines the structure of the model [163]: as an 

example, if the model aims at exploring the impact of treatment use, considering additional 

states like ‘successfully treated’ or ‘unsuccessfully treated’ can be of great interest. 

Besides, as previously mentioned, the population can be divided into distinct homogeneous 

classes with different behavioural characteristics (i.e. all members of a class have 

comparable risk of both contracting and transmitting infection) [77]. Age-structured models 

are frequently used when modeling childhood diseases, whereas risk-structured models are 

considered when modeling sexually transmitted diseases. For livestock diseases, models can 
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take into account the herd structure and different groups of animals (i.e. calves, heifers, 

lactating cows, and dry cows [40, 162]). The representation of host heterogeneity in models 

will be presented in more details in Chapter 3.  

 

2. Choice of the mathematical formalism 

Models can be deterministic, describing average dynamics, or stochastic, considering that 

chance can have a great impact on the infection dynamics [163]. As an example, in a SIR 

deterministic model, the rate at which individuals recover is fixed: for a given state of 

variable I, there is always the same number of individuals going from I to R during a time 

step. For a SIR stochastic model, I individuals have a given probability of transition from I 

to R and, due to random draws, the number of individuals going from I to R during a time 

step is variable from one model repetition to the other. Deterministic formulations are 

suited for large populations where randomness has relatively little overall impact, whereas 

stochastic models are more appropriate for small populations and rare events where the 

fluctuations have larger effects [45]. 

The scale and unit of modelling have also to be defined. The spread of a livestock infectious 

disease can indeed be modelled within a herd (the unit of modelling is then the animal) or 

between herds (the unit of modelling is then the farm). The scale is closely related to the 

research question. In most circumstances, disease transmission is a localized process. If, for 

instance, the study is aimed at exploring the infection spread in a school after an infected 

child is introduced, the unit and scale should be the individual and the population 

respectively. However, movements of individuals between human or animal populations 

facilitate the geographical spread of infectious diseases [77]. If the study is focused, for 

example, on determining the influence of neighbouring relationships and animal movements on 

the infection dynamics, a between herd scale should be considered in the model. For such 

models, the within farm infection dynamics is explicitly represented or not. In the previously 

described FMD model (see introduction IV.3.), the unit of modelling is the farm: due to the 

rapid transmission of the virus between animals situated at the same location, the within 

herd infection dynamics can be assumed negligible. Therefore, the whole farm is considered 

infected as soon as an animal is infected. On the contrary, for similar time scales but 

moderately spreading pathogens like the Bovine Viral Diarrhoea Virus, the within herd 

dynamics should be represented in details since it is unrealistic to assume that the entire 

farm is infected as soon as a single animal is infected [34]. For models describing the spread 
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of a pathogen at a larger scale (region, country, or world), the spatial positions of hosts are 

often taken into account. The previously cited FMD model aimed at simulating the spread of 

the FMD over the whole United Kingdom, it was a spatial model [74]: the locations of all 

farms were explicitly represented and the rate of transmission between two farms was 

expressed as a function of the distance. 

Models can be compartmental or individual-based. In individual-based models, the health 

state of each individual is monitored over time, whereas compartmental models track the 

infection process for the individuals of a same health state collectively [163]. Individual-

based models are often more computationally intensive but can also provide finer 

information. When host characteristics (such as age, sex, gestation status, intensity of 

contacts with the other individuals, etc.) are supposed to have an impact on the infection 

dynamics and are variable between individuals, it is more appropriate to develop individual-

based approaches than compartmental models with many distinct compartments.  

Concerning their time dependence, models can be in continuous time (the system could then 

be described by differential equations) or in discrete time (difference equations could then 

capture the dynamics). Differential equations provide a means for avoiding the issues 

regarding the size of the time step by describing events occurring continuously, rather than 

at discrete time intervals [163]. Indeed, in discrete time models, the choice of the time step 

is crucial: if this latter is too large (i.e. two successive transitions between health states can 

occur during a single time step), the model provides inaccurate and even non sense results. 

The appropriate size of the time step depends on the modelled phenomena: it should 

generally be less than the shortest average duration that individuals spend in a given health 

state [163].  

At last, to describe the infection dynamics on the long run, key aspects of demography of 

the population considered (births, deaths, and migrations) may need to be incorporated in 

the model. In the case of animal populations being managed by humans (e.g. pigs or cattle 

herds), the representation of demography can be quite complex and sometimes require the 

development of an elaborated population dynamics model [44, 94].  

3. Confrontation of the model to data 

A second step after the model elaboration consists in determining appropriate and plausible 

values for model parameters. This can be done qualitatively based on information from the 

literature or expert’s opinions. If data are available, model parameters can be quantitatively 
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assessed by fitting model predictions to data. However, sometimes this assessment is not 

feasible from existing knowledge or data and new data sets need to be collected and 

analysed using statistical methods. Although generic models can provide an intuitive 

explanation of the transmission of infectious diseases, it is only through detailed 

parameterization and rigorous assignment of numerical values to parameters that useful 

public health guidance can be generated [77]. 

When performing parameter inference from data different statistical techniques could be 

used. A widely known approach is that of “least squares”. The sum of squares of the 

difference between the model predictions and the observed data is calculated in order to 

determine the parameter values which lead to the smallest value for this sum [163]. Another 

well-defined and widely-applied approach when fitting a model to data is that of “maximum 

likelihood”: for a given set of parameters, the dynamics predicted by the model is 

determined. Then, the likelihood (i.e. the probability) that the observed data come from such 

dynamics is calculated. The best-fitting parameters are those which maximize this likelihood: 

the model is in closest agreement with the available data [77].   

Bayesian statistical inference is also a widely-applied approach to assess parameter 

values. Although as for frequentist methods, the likelihood is still the key principle, there 

is an important difference in the way it is used. For a frequentist, parameter estimation is 

based solely on the likelihood while, for a Bayesian, it is based on both the likelihood and 

the prior information [99]. The prior distribution of a parameter is the probability 

distribution describing our initial knowledge about the parameter value. This distribution 

is based on previous studies or expert knowledge. This concept is criticized by 

frequentists as it introduces an element of subjectivity. In fact, estimated parameters 

values are an intermediate between observations and prior distribution and problems can 

occur when prior information is misleading and when one has a strong confidence in it [99]. 

The main difference is that frequentist statisticians consider model parameters as fixed 

but unknown while Bayesians consider them as random variables [130]. Bayesian methods 

often lead to more realistic estimated parameter values: a posterior distribution is 

obtained for each parameter, distribution which represents the uncertainty about the 

parameter, conditionally to data. Based on Bayes’s theorem, the posterior distribution is 

expressed as: 
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At this stage, it is impossible to determine the posterior distribution because the integral in 

the denominator is most often very difficult to obtain. However, this integral can be 

considered as a constant because it does not depend on the parameters θ. Markov chain 

Monte Carlo (MCMC) methods are then used: they are a class of algorithms which allow 

obtaining random draws from a probability distribution which is known up to a constant [123]. 

In our case, the prior distribution and the likelihood are known, so the numerator can be 

expressed. The posterior distribution is then known excepted for the denominator constant. 

Monte Carlo integration allows drawing samples from the target distribution and then 

calculating sample averages to approximate expectation. MCMC methods allow drawing these 

samples by appropriately constructing a Markov chain1 that has the desired distribution as 

its equilibrium distribution [53]. The state of the chain after a large number of steps is then 

used as a sample from the desired distribution (i.e. the posterior distribution in our case). 

There are many algorithms designed for constructing these chains, but all of them, including 

the Gibbs sampler are special cases of the Metropolis-Hastings algorithm [53]. Several 

issues arise when implementing MCMC. A problem is to determine how many steps are needed 

to converge to the stationary distribution within an acceptable error. A good chain will have 

rapid mixing (i.e. the stationary distribution is reached quickly starting from an arbitrary 

position). The number of chains to be run, the starting values (to be chosen more carefully 

for slowly mixing chains), the length of burn-in (i.e. the first part of the chain to be removed 

in order to ‘forget’ the starting position) are also important technical adjustments to be 

considered in practice.  

When confronting an SIR-like epidemiological model to the data, likelihood-based estimation 

of its parameters would be relatively easy to implement if the times of infection and removal 

were observed for all cases [32]. In practice, the transmission process is rarely completely 

observed (e.g. times of infection or removal are not observed for all individuals) and 

reported quantities may be aggregated (e.g. weekly). In this context, when the calculation of 

                                                 
1 A Markov chain is a random process with the property that the next state depends only on the 

current state. 

Posterior 

distribution 

Prior  
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the likelihood becomes intractable, data augmentation methods (i.e. which allow augmenting 

the observed data with the missing information, for instance the times of infection or 

removal) were extensively used. MCMC sampling is of particular interest since it allows 

exploring the joint posterior distribution of parameters and augmented data. Although 

limited by the size of the augmented data (due to the computation times which dramatically 

increase with this size), MCMC approach is appropriate and efficient for small datasets (not 

exceeding a few thousands). 

 

II- The modelling of C. burnetii spread within a dairy 

cattle herd 

1. Description of the data set used for parameter 

estimation (data set A) 

The data were collected by Raphaël Guatteo during its PhD and described in details in one of 

his papers [59]. R. Guatteo carried out a one-month longitudinal study in five French dairy 

cattle herds infected with C. burnetii, but without any clinical sign attributable to Q fever. 

The selected herds were chosen to satisfy two major criteria: (i) the presence of the 

bacterium C. burnetii within the herd; this was certified by a positive PCR result on bulk tank 

milk and more than 20% of cows seropositive for C. burnetii, and (ii) the absence of any 

control measure (i.e. antibiotics or vaccination directed against C. burnetii) before the end 

of the study. To assess the dynamics of C. burnetii infection, the lactating cows of these 

herds were sampled from one to five times on a weekly basis (Figure 1.3). The cows entering 

one of the herds during the study (as a consequence of a purchase or a first calving) were 

also included.  

The individual state of each sampled cow was determined at each sampling time using an 

ELISA test (LSI ELISA Cox Ruminants®, Lissieu, France) on serum and a real-time PCR (LSI 

Taqvet Coxiella burnetii®, Lissieu, France) on three different samples (milk, faeces and 

vaginal mucus). The results of the ELISA test were expressed by the ratio (S/P) between 

optical densities of the sample and the positive control, and a cow was considered 

seropositive when the S/P ratio in serum was greater than or equal to 0.4. For the PCR test, 

only the samples presenting a typical amplification curve (demonstrating C. burnetii DNA 
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detection) with a Ct (cycle threshold) below 40 were considered positive. A cow was 

identified as PCR-positive when at least one of its three samples was PCR-positive.  

At the initial point of the follow-up (day D0), the sizes of the five herds ranged from 24 to 

79 lactating cows and a total of 217 cows were tested (Table 2.1). Thereafter, 100% of the 

initially (at D0) PCR-positive cows, 100% (or 50% in herds with more than 40 lactating cows) 

of the initially seropositive/PCR-negative cows, and 65% of the initially seronegative/PCR-

negative cows were retained for the follow-up. Thus, during the following month, between 

55% and 79% of the cows of each herd were tested every week (at D7, D14, D21 and D28) in 

the same way in order to determine their individual health state. According to the PCR 

results and ELISA test, at D0, between 35% and 74% of cows per herd were identified as 

PCR-negative/seronegative, between 1% and 23% were PCR-positive/seronegative, between 

2% and 35% were PCR-positive/seropositive and between 17% and 37% were PCR-

negative/seropositive. At the end point of the follow-up (D28), the herds comprised between 

24 and 81 lactating cows.  

 

 

 

Figure 2.3. Sampling protocol during the one-month longitudinal study.  

Cows present in the herd at time 0 of the follow-up were sampled either 5 times on a weekly basis 
or only once at time 0 (D0). Cows entering into the herd during the follow-up were sampled every 

week only the end of the follow-up (at D7, D14, D21 and D28). 
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Altogether, 821 individual health states were determined, and respectively 145 complete (i.e. 

with five sampling points per cow) and 89 incomplete (i.e. with one to four sampling points per 

cow) temporal trajectories of individual health states were available. These data were here 

used in the C. burnetii model to assess the main epidemic parameters by Bayesian inference. 

In addition, the same dataset will be used to define and calibrate the representation in the 

model of the individual variability in shedding routes and levels. This latter point will be 

described in the section of the thesis dealing with the incorporation in the model of the 

heterogeneity of shedding (section II of Chapter 3).   

 

Table 2.1. Numbers of animals according to the results of diagnostic tests (ELISA and PCR). The 
numbers are given for each of the five herds and each of the five sampling points. 

Number of animals D0 D7 D14 D21 D28 

PCR negative 10 6 7 7 5 

seronegative PCR positive 2 1 0 0 1 

PCR negative 7 4 6 6 7 

seropositive PCR positive 5 6 4 4 4 

not sampled 0 7 7 7 7 

Herd 1 

TOTAL 24 24 24 24 24 

PCR negative 23 14 12 16 11 

seronegative PCR positive 2 2 3 0 5 

PCR negative 18 4 9 8 6 

seropositive PCR positive 6 7 3 3 5 

not sampled 0 22 22 22 22 

Herd 2 

TOTAL 49 49 49 49 49 

PCR negative 25 18 17 19 21 

seronegative PCR positive 2 1 3 2 0 

PCR negative 6 5 4 5 4 

seropositive PCR positive 1 1 1 1 0 

not sampled 0 9 9 9 12 

Herd 3 

TOTAL 34 34 34 36 37 

PCR negative 14 14 2 11 21 

seronegative PCR positive 7 4 16 10 7 

PCR negative 4 4 10 6 6 

seropositive PCR positive 6 4 0 3 2 

not sampled 0 7 7 7 7 

Herd 4 

TOTAL 31 33 35 37 43 

PCR negative 28 21 5 17 16 

seronegative PCR positive 1 2 10 3 2 

PCR negative 27 18 33 15 14 

seropositive PCR positive 23 12 4 15 19 

not sampled 0 27 28 31 30 

Herd 5 

TOTAL 79 80 80 81 81 

All herds TOTAL 217 220 222 227 234 
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2. Description of the data used to define some of 

the prior distributions (data set B) 

Since the estimation was performed in a Bayesian framework (as justified in the next 

section), we had to define the prior distribution of the health states in an infected dairy 

cattle herd. To avoid the use of the same data set for both quantification of prior 

distributions and inference and since additional data were available, we determined the 

distribution of health states of 251 cows from six French infected dairy cattle herds 

followed by R. Guatteo (in a different study from the one described in the previous section 

[61]). The six herds exhibited repeated abortions due to C. burnetii confirmed by at least 

one positive PCR result on vaginal mucus of cow after abortion but no control measure (i.e. 

antibiotics or vaccination directed against C. burnetii) had been implemented before the 

sampling. The individual state of each cow was consistently determined in the same way as 

previously described, using an ELISA test on serum and a real-time PCR on milk, faeces and 

vaginal mucus samples. Table 2.2 shows for each of the six herds the repartition of the cows 

with respect to their seropositive/seronegative and PCR positive/ PCR negative status. To 

determine the prior distribution of the health states in an infected dairy cattle herd, we 

took into account the mean proportions in each of the four categories (see section III of 

this chapter). 

 

Table 2.2. For each of the six herds, (i) repartition of cows function of their results to diagnostic 
tests (ELISA and PCR), and (ii) total numbers of cows. 

Criteria     Herd 1 Herd 2 Herd 3 Herd 4 Herd 5 Herd 6 Mean 

PCR - 20.9% 46.2% 27.5% 47.4% 50.0% 35.5% 37.9% 
Sero - 

PCR + 14.0% 17.9% 15.7% 8.8% 10.0% 3.2% 11.6% 

PCR - 51.2% 10.3% 27.5% 17.5% 20.0% 38.7% 27.5% 

Proportion 
of  

cows Sero + 
PCR + 14.0% 25.6% 29.4% 26.3% 20.0% 22.6% 23.0% 

Total number of cows 43 39 51 57 30 31 251 

 

3.  Modelling assumptions 

The aim of our study is to understand the spread of C. burnetii infection within a dairy herd 

by assessing the main epidemiological parameters from field data. Since we focused on one 

population (here the herd), the unit of modelling that we considered was the animal. Based on 

expert’s opinion and observations in data set A, we opted for a modified version of the SIR 
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model: 2 classes of I (I-, seronegative shedders versus I+, seropositive shedders) were 

considered as important disease categories and represented in the model. Transitions in both 

directions between S and I- and between I+ and R were assumed (Figure 2.4). As inhalation 

of contaminated aerosols is the main route of infection for ruminants, we added a 

compartment representing the environmental bacterial load and linked the probability of 

infection (i.e. the probability of transition from S to I-) to this compartment. As we focused 

on a population of small size (around 50 cows), all the transitions between health states were 

supposed stochastic. We chose a time step of a week because no transition could likely occur 

in less than 7 days. Moreover, only an individual-based model with data at the individual level 

would allow us to assess the model parameters. In fact, as transitions in both ways between 

S and I- and between I+ and R are allowed in the model, the number of animals in each health 

state at each time point would be an insufficient information. Let us take an example with 

two health states A and B. We denote by p(A=>B) and p(B=>A) the probabilities of transition 

in each direction for an individual and NA(t) and NB(t) the total number of individuals in each 

state at time t. Let is say that NA and NB do not change between two adjacent time points, 

but that k individuals moved in each direction. It is impossible to estimate p(A=>B) and 

p(B=>A) if the only information we have are NA and NB. The inference has to be based on 

individual trajectories: if we know that k individuals moved in each direction, it is perfectly 

possible to estimate p(A->B) as k/NA and p(B->A) as k/NB. This reasoning led us to opt for 

an individual-based approach which was possible to implement due to the fact that the data 

we used consisted of individual trajectories (as described in section II.1 of this chapter). 

Then, the crucial step was to estimate model parameters from data set A. Several issues 

were raised: first, the data was incomplete (i.e. some cows were not sampled at each 

sampling point). Besides, diagnostic tests (and especially ELISA) were imperfect: the 

individual health state observed in the data could then differ from the real health state of 

the cow. Lastly, some model parameters were assumed to be herd-dependant. Therefore, we 

had to deal with the missing data, the uncertainty due to the imperfection of diagnostic 

tests, and the hierarchical structure of the process to estimate the model parameters. All 

these arguments converged towards the choice of the Bayesian framework for parameter 

inference.  
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1. Abstract 

Q fever is a worldwide zoonosis caused by Coxiella burnetii. Although ruminants are 

recognised as the most important source of human infection, no previous studies have 

focused on assessing the characteristics of the bacterial spread within a cattle herd and no 

epidemic model has been proposed in this context. We assess the key epidemiological 

parameters from field data in a Bayesian framework that takes into account the available 

knowledge, missing data and the uncertainty of the observation process due to the 

imperfection of diagnostic tests. We propose an original individual-based Markovian model in 

discrete time describing the evolution of the infection for each animal. Markov chain Monte 

Carlo methodology is used to estimate parameters of interest from data consisting of 

individual health states of 217 cows of five chronically infected dairy herds sampled weekly 

over a four-week period. Outputs are the posterior distributions of the probabilities of 

transition between health states and of the environmental bacterial load. Our findings show 

that some herds are characterised by a very low infection risk while others have a mild 

infection risk and a non-negligible intermittent shedding probability. Moreover, the antibody 

status seems a key point in the bacterial spread (shedders with antibodies shed for a longer 

period of time than shedders without antibodies). In addition to the biological insights, these 
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estimates also provide information for calibrating simulation models to assess control 

strategies for C. burnetii infection. 

2. Introduction 

Q fever is a zoonotic disease caused by Coxiella burnetii, a bacterium found worldwide in a 

wide range of animals. Since 2007, Q fever has become an important public health problem in 

several parts of Europe [72, 108, 121, 141]. Although Q fever in humans is asymptomatic in 

more than 60% of cases, it may lead to either an acute or a chronic disease [128]. The acute 

disease is mainly flu-like but severe complications, such as pneumonia or hepatitis can occur. 

In its chronic form, endocarditis is the most frequent manifestation, especially in patients 

with pre-existing heart valve lesions. Abortion in pregnant women can also occur. Recently, a 

large epidemic of Q fever emerged in the southern part of the Netherlands causing more 

than 3000 human cases since 2007 [33]. A link has been established between some human 

cases and farms of small ruminants where abortions due to Q fever were detected [141]. 

Ruminants are recognised as the main source of human infection [109, 118]. Infected animals 

shed the bacterium through various routes such as parturition products, faeces, urine, 

vaginal mucus or milk [15, 20, 57]. The transmission of infection both between ruminants and 

between ruminants and humans is mainly due to inhalation of aerosolised bacteria or 

contaminated dust [103]. The bacterium survives very well in the environment [167] and can 

infect humans and animals for a long period after it has been excreted by the host. 

Therefore, the control of infection within ruminant herds is the most important factor 

influencing the occurrence of human outbreaks. Besides these obvious implications in terms 

of public health, controlling the spread of Q fever is also motivated by economic and animal 

health concerns. Indeed, in ruminants, the infection may also cause abortions, infertility, 

metritis or chronic mastitis [5, 20, 26, 125]. 

Previous studies of Q fever in ruminants have shown that some infected animals shed the 

bacteria in a discontinuous way: this intermittent shedding has been described in the milk 

and faeces of goats [11] as well as in the milk, faeces and vaginal mucus of cows [37, 59, 131]. 

However, little information is available on the characteristics of the spread of C. burnetii 

within a cattle herd, a key point in the understanding and the control of the disease. 

Specifically, the probability that a susceptible cow will become infected when introduced 

into a chronically infected herd, the duration of shedding for an infectious cow, the 

differences between the shedding patterns of seronegative and seropositive cows, the 

probability of intermittent shedding and the duration of non-shedding periods are all key 

parameters which have not been assessed. In order to address these issues, we propose an 
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original modelling-based Bayesian approach to quantify the epidemiological parameters 

related to the transmission of C. burnetii within a dairy cattle herd.  

We have built a dynamic discrete time individual-based stochastic model describing the 

evolution of health states with time for each animal. Due to the imperfection of diagnostic 

tests (assessed by sensitivity (Se) and specificity (Sp) parameters), the observed health 

state of a cow in our data can differ from its real health state. Thus, this uncertainty in 

observations has to be explicitly incorporated in the model to provide more accurate 

estimates of the parameters, particularly of the transition rates. We use the Bayesian 

paradigm to deal with this uncertainty, the missing data (since for some animals the health 

state was not identified at every moment in the follow-up) and to account for the 

hierarchical structure of the process (e.g. some parameters are herd-dependent). Inference 

is performed from field data (described in Guatteo et al. [57]) using Markov chain Monte 

Carlo (MCMC) methodology [53], which is being increasingly used in epidemic modelling [31, 

65, 88, 119, 145]. Posterior distributions of model parameters are analysed and biological 

interpretations are proposed.  

3. Data 

A one-month longitudinal study was carried out in five French dairy cattle herds infected 

with C. burnetii, but without any clinical sign attributable to Q fever. The selected herds 

were chosen to satisfy two major criteria: (i) the presence of the bacterium C. burnetii 

within the herd; this was certified by a positive PCR result on bulk tank milk and more than 

20% of cows seropositive for C. burnetii, and (ii) the absence of any control measure (i.e. 

antibiotics or vaccination directed against C. burnetii) before the end of the study. The 

protocol of the study is described in detail in Guatteo et al. [57]. To assess the dynamics of 

C. burnetii infection, the lactating cows of these herds were sampled from one to five times 

on a weekly basis. The observed individual state of each cow was determined at each 

sampling time using an ELISA test (LSI ELISA Cox Ruminants®, Lissieu, France) on serum 

and a real-time PCR (LSI Taqvet Coxiella burnetii®, Lissieu, France) on three different 

samples (milk, faeces and vaginal mucus). The results of the ELISA test were expressed by 

the ratio (S/P) between optical densities of the sample and the positive control, and a cow 

was considered seropositive when the S/P ratio in serum was greater than or equal to 0.4. 

For the PCR test, only the samples presenting a typical amplification curve (demonstrating C. 

burnetii DNA detection) with a Ct (cycle threshold) below 40 were considered positive. A 

cow was identified as PCR-positive when at least one of its three samples was PCR-positive. 

At the initial point of the follow-up (t0), the sizes of the five herds ranged from 24 to 79 
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lactating cows and a total of 217 cows were tested (see Tables 2.4 and 2.5 of the 

Supplementary Material). Thereafter, 100% of the initially (at t0) PCR-positive cows, 100% 

(or 50% in herds with more than 40 lactating cows) of the initially seropositive/PCR-negative 

cows, and 65% of the initially seronegative/PCR-negative cows were retained for the follow-

up. Thus, during the following month, between 55% and 79% of the cows of each herd were 

tested every week (at t7, t14, t21 and t28) in the same way in order to determine their 

individual health state. The cows entering one of the herds during the study (as a 

consequence of a purchase or a first calving) were also included. According to the PCR 

results and the ELISA test, at t0 between 35% and 74% of cows per herd were identified as 

PCR-negative/seronegative, between 1% and 23% were PCR-positive/seronegative, between 

2% and 35% were PCR-positive/seropositive and between 17% and 37% were PCR-

negative/seropositive. At the end point of the follow-up (day 28 – t28), the herds comprised 

between 24 and 81 lactating cows. Altogether, 821 individual health states were determined 

and 235 (complete or incomplete) temporal trajectories of individual health status were 

available. 

4. Model and methods 

Based on the available knowledge concerning the clinical and epidemiological aspects of Q 

fever, an epidemic model describing its spread within a dairy cattle herd was built. Firstly, 

the allowed transitions between the health states of the epidemiological model are 

described. Then, the dynamic model representing the temporal evolution of observed 

individual health states is presented. Finally, we detail the assumed priors and calculated 

posterior distributions of the model parameters in the Bayesian framework (using MCMC 

methods). 

a. Epidemic model 

Each individual of the population of lactating cows is in one of four mutually exclusive health 

states at a given time, as shown in Figure 2.4. By inhaling bacteria contained in the 

environment, a susceptible cow, S (non-shedder without antibodies), can become infectious, 

I- (shedder without antibodies), and start shedding. Either it manages to eliminate the 

bacterium and becomes S again (non-shedder without antibodies and then apparently 

susceptible) or it produces antibodies and continues being infectious and shedding, I+ 

(shedder with antibodies). When it stops shedding, it becomes R (non-shedder with 

antibodies). Since the shedding is intermittent [59, 131], a transition from R to I+ is 

assumed. Antibodies can last several years in humans [47] and at least several months in 
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cattle [125]. Here, we assume that the probability of observing a cow lose its antibodies over 

the period of study (one month) is very low and negligible, especially in chronically infected 

herds where immunity is probably steadily stimulated. Therefore, no transition from health 

states with antibodies (I+ or R) to health states without antibodies (I- or S) is allowed in our 

model. Shedders (I- and I+) contribute to filling the environment compartment (E) with the 

bacteria: ε1 and ε2 are the quantities of bacteria shed during a time step (one week in our 

case) by an individual I- and I+ respectively. The probability of infection or re-infection, p 

(transition from S to I-) is expressed at each time step as pt = 1-exp(-Et), where Et is the 

quantity of bacteria in the environment of the herd at time t (one unit of Et corresponding to 

a probability of transition from S to I- of (1-1/e)). The mortality rate of C. burnetii in the 

environment, µ includes the natural mortality of the bacterium and its removal in relation to 

the periodic cleaning of the cattle housing carried out by the farmer. 

 

 

Figure 2.4. Flow diagram describing the modelled spread of C. burnetii within a cattle herd. The 
health states are: S, non-shedder cow without antibodies, I-, shedder cow without any antibodies, 

I+, shedder cow with antibodies and R, non-shedder cow with antibodies. E represents the 
environmental bacterial load. The model parameters are: p, the probability of infection or 

reinfection (equal to 1-exp(-E)), m, the  probability of transition from I- to S, q, the probability of 
transition from I- to I+, r, the probability of transition from I+ to R, s, the probability of 

transition from R to I+, ε1 and ε2, the quantities of bacteria shed during a time step by an 
individual I- and I+ respectively and µ, the mortality rate of C. burnetii in the environment. 

 

b. Bayesian framework 

We develop a dynamic discrete time individual-based stochastic model to represent the 

temporal evolution of the observed health state of each cow. This is done in two main steps: 

firstly, the temporal evolution of the real individual health state is modelled using Markovian 

transitions and secondly, the uncertainty of the observations is incorporated using the Se 

and Sp of the two diagnostic tests.  
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Let )(
,
i
htR Є {S, I-, I+, R} be the real health state of individual i belonging to herd h (i Є 

{1,…,N(h)} with N(h) the total number of cows in the herd h, h Є {1,…,H} and H the number of 

herds) at time t (t Є {0,…,T} with t28=T and t0=0). As illustrated by the graph in Figure 2.5, 

for t>t0, )(
,
i
htR , depends on )(

,
i

h1tR −
and on 

htE ,
, the quantity of bacteria in the environment of 

herd h at time t. The transition probabilities can be gathered in the matrix Qt,h: 
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for t=1,...,T, i=1,...,4 and xj, xk Є {x1= S, x2=I-, x3=I+, x4=R}. 

The transition probability from S to I- varies with time and herd since pt = 1-exp(-Et). This is 

not the case for the other transition probabilities: m, q and r are assumed constant. As s is 

related to the intermittency of shedding, possibly due to a stress specifically occurring in a 

given herd (like an anti-parasitic treatment or a modification in herd management), this 

parameter is considered herd-dependent. 

The initial real health states, )(
,
i
h0R , are independent random variables with a probability 

distribution specified by J, where )( )(
, j
i
h0x xRPJ

j
==  for xj Є {x1= S, x2=I-, x3=I+, x4=R}. 

The environment dynamics is expressed by the equation: 

( ) +−
+ ++−= ht,2ht,1ht,h1,t IεIεEµ1E , as it is dependent on the quantity of bacteria in the 

environment and the prevalence of shedders ( +−
htht I I ,, , ) at the previous time (Figure 2.5). 

Since the beginning of the follow-up does not correspond to the infection onset, the initial 

content of C. burnetii in the environment of each herd, h0E , , is not zero and has to be 

introduced and then estimated.  

The observation level accounts for the uncertainty of the observations )(
,
i
htO  and describes 

their relationship with the real health states )(
,
i
htR  using the matrix U: 
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where )( )(
,

)(
, j

i
htk

i
htjk xRxOPU === ,  for t=0..T, i=1..4 and xi, xk Є {x1= S, x2=I-, x3=I+, 

x4=R}.  

 

 

Figure 2.5. Network describing the temporal evolution of individual health states of animals within 

an infected dairy cattle herd. )(
,
i
htR Є {S, I-, I+, R} represents the real and non-observed health 

state of individual i belonging to herd h (i Є {1,…N(h)} with N(h) the total number of cows in the 

herd h, h Є {1,…H} and H the number of herds) at time t (t Є {0,…T)} with t28=T and t0=0). Et,h 

describes the quantity of bacteria in the environment of the herd h at time t. )(
,
i
htO  represents 

the observed health state associated with )(
,
i
htR . Jh is the probability distribution of the initial 

real health states and U is the matrix of the uncertainty parameters (Se and Sp of tests) linking 
real and observed health states. Qh contains the parameters of transitions between real health 

states in herd h except those characterising the S<->I- transitions. Qh is a 3x4 matrix 

corresponding to the last three rows of matrix Qt,h described in Equation (3.1). 

 

 

We consider that the assumption of conditional independence between ELISA and PCR is 

reasonable because the two tests have different bases: ELISA relies on the detection of 

antibodies while PCR is a DNA-based technique to detect bacteria. Enoe et al. [41] made the 

same assumption to assess the sensitivities and specificities of a nested PCR and a 

microscopic examination of kidney imprints for the detection of Nucleospora salmonis in 

rainbow trout. Elements of U are then defined as combinations of the specificities of the 
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PCR and ELISA tests (SpPCR and SpEl respectively) and their respective sensitivities (SePCR 

and SeEl). 

c. Bayesian inference: calculation of the posterior distribution 

of the model parameters from likelihood and prior 

distribution 

In the Bayesian paradigm, the joint posterior distributions of model parameters can be 

written as ( ) ( ) ( )QJQJOLOQJp ,*,, π∝ , where ( ) ( )QJ and QJOL ,, π  are the likelihood 

function and the joint prior distribution of model parameters respectively and       

U
51h
T1t

htQQ

...
...

,

=
=

=  (see subsection 8. Supplementary Material for more details). 

Since the uncertainty parameters of the matrix U are fixed, they are not considered in the 

joint prior density ( )QJ ,π . The Se of the ELISA test is set equal to 0.85 (according to a 

recent estimation, Guatteo, pers. comm.) and the Sp is taken as equal to 0.95, while for the 

real-time PCR, both Se and Sp are fixed at 0.95. As no published data on the test 

characteristics are available, these values were chosen in accordance with expert opinion.  

Available knowledge is incorporated into the model through prior distributions. Given that C. 

burnetii withstands hard environmental conditions [103], the median of its life expectancy 

(1/µ) on the farm in an infectious form is considered to be 4.5 weeks with a 95% credible 

interval (CI) of 0.7-14 weeks. To determine the prior distribution of the initial real health 

state J, we use independent data from six other French infected dairy cattle herds. On 

average per herd 38% (min=20.9%, max=50%) of cows were observed to be in state S, 12% 

(3.2%, 17.9%) in state I-, 27% (10.3%, 51.2%) in state I+ and 23% (14%, 29.4%) in state R 

(Guatteo, pers. comm.). As the initial proportions of S, I-, I+ and R should sum to one (as 

they represent a partition of the individual health states), an appropriate prior distribution 

of the initial health state J is a Dirichlet distribution, D (3.5, 1, 2.5, 2). Its coefficients are 

chosen to account for the observed proportions in the extra data (e.g. proportion of S is 

3.5/9=38%, etc). Concerning the transition parameters (p, m, q, r and s), minimally 

informative prior densities, reflecting the lack of information, are chosen. As these 

parameters are assumed to lie between 0 and 1, Beta distributions are used for the 

probabilities of transition from S to I- (p), I+ to R (r) and R to I+ (s) health states. A 

Dirichlet distribution is assumed for the probabilities of transition from I- to S (m) and I+ 

(q), respectively, since the sum of m, q and ”the probability of staying in I-“ is equal to 1. The 

marginal distributions of m, q, and Beta distributions for r and s are rather flat. As C. 
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burnetii spreads moderately quickly in cows [8, 66], we use a Beta distribution with a median 

of 0.33 and a 95% CI=[0.05-0.77] in order to penalise high values of p. As the environmental 

bacterial load E can be expressed with respect to the probability of infection p, the prior on 

E is deduced from the prior on p (median=0.4, 95% CI=[0.05-1.44]). Concerning the excretion 

parameters ε, we faced a complete lack of information. However, as ε is the quantity of 

bacteria shed per week by a shedder cow, a plausible assumption is that ε=ε1+ε2 is lower than 

the environmental bacterial load E. Hence, we use a truncated Normal distribution with a 

median of 0.23 and 95% CI=[0-0.72] for both ε1 and ε2. All these prior distributions are 

detailed in Table 2.3. 

Since posterior distributions are not analytically tractable, inference is based on 

computationally intensive methodology: MCMC methods based on the Gibbs sampling 

algorithm implemented in JAGS 1.0.3 are used. Bayesian MCMC allows datasets with missing 

data to be fully modelled by sampling missing data points from the posterior distributions (in 

Equation S1 of the Supplementary Material the matrix O is not entirely observed). Results 

are analysed with R 2.8.1 [127] and R package coda [126]. 

d. Model adequacy 

In order to check the model adequacy for the data, a subsequent assessment is performed. 

We simulate infection spread in five cattle herds with the same size, same initial 

environmental content and same number of missing data as in the original dataset, using 

parameters drawn from inferred posterior distributions. The missing pattern (i.e. missing 

data during the follow-up are more frequent for PCR-negative cows at t0 than for PCR-

positive ones) is not taken into account. The quantiles of the numbers of transitions between 

observed health states in each herd for a time interval of one week are calculated and 

compared with the data. 

5. Results 

Visual inspection of the chain pattern does not indicate non-convergence of the MCMC 

algorithm (results not shown). Most of the parameters have a potential scale reduction 

factor of the Gelman-Rubin diagnostic [51] close to one (≤1.05). However, five of the 35 

independent parameters monitored have values of potential scale reduction factors between 

1.05 and 1.27. For these parameters, the results have to be interpreted with care (see Table 

2.6 of the Supplementary Material for details). Median values and 95% CI of posterior 

densities (represented in Figures 2.7 and 2.8 of subsection 8. Supplementary Material) of 

inferred parameters are given in Table 2.3 and in subsection 8 (Table 2.7). 
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a. Parameters of transition between health states 

The spread of C. burnetii within a dairy cattle herd is mainly characterised by shedding 

parameters and probabilities of transition between health states, which are also 

interpretable as sojourn times in these states (equal to the inverse of transition 

parameters). For all these parameters, the posterior distributions cover shorter intervals 

than those defined by the prior distributions, which reveals that the data provide 

information. The probability of transition from the non-infection state S to the shedder 

state I- (corresponding to the infection risk) seems moderate in some herds (for example in 

herd 3 with a median p at time 1 of 0.073 and a 95% CI=[0.014–0.213]) but quite high in 

others (for example in herd 4 with a median p at t0 of 0.466 and 95% CI=[0.272-0.660]). 

Whereas the transition from the shedder state without antibodies, I-, to the non-infected 

state S is relatively more rapid (median of m equal to 0.695 week-1, 95% CI=[0.542-0.844]), 

the acquisition of antibodies in the infectious state (transition I- -> I+) is rather rare 

(median of q equal to 0.017 week-1, 95% CI =[0.001-0.082]. Moreover, the duration in health 

state I- is shorter than in I+ : posterior distributions do not overlap and if we compare the 

medians, the median duration in I- is more than three times shorter than that in I+ (1.4 

versus 4.9 weeks respectively). The median time spent in state R before new shedding 

(representing the intermittency of shedding) is less than 3.6 months in two of the five herds 

(herds 4 and 5) but can potentially be longer in the other three (e.g. 26.6, 95% CI=[6.3-

159.9] in herd 1).  

b. Environment-related parameters 

Concerning the shedding parameters, as the posterior distributions of the quantities of 

bacteria excreted by infectious cows without antibodies (ε1) and with antibodies (ε2) are 

almost superimposed, we cannot determine if I- animals shed more than, at a similar level to, 

or less than I+ animals. For all but herd 5, the posterior distributions of the environmental 

bacterial load do not vary much with respect to time (Figure 2.8 of subsection 8). Therefore, 

it is not possible to know how the environmental bacterial load evolves with time. For herd 5, 

as the posterior distribution shifts to the right from t0 to t28 it is possible that the 

environmental bacterial load increases with time (at t0: median of 0.261, 95% CI=[0.045-

0.606], at t28: median of 0.558, 95% CI=[0.201-1.278]). Since at a given time posterior 

distributions of E widely overlap, we can not determine if environmental bacterial loads 

differ between herds. For the parameter µ, the posterior distributions are close to the prior 

distribution regardless of the herd. It seems that the dataset does not contain sufficient 

information to assess this parameter. 
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Figure 2.6. Goodness-of-fit assessment. Boxplots summarise the posterior predictive distributions 

of simulated numbers of weekly transitions between observed health states (S, I-, I+ and R) in 
each herd (H1 to H5) during the one-month follow-up. The quartiles are represented by horizontal 

lines. The whiskers indicate maximum and minimum values of the simulated distributions that lie 
less than 1.5 IQR lower or higher than the first or the third quartiles respectively. Simulated 

values beyond the ends of the whiskers are indicated by a point. Dark filled-in circles represent 
numbers of transitions between observed health states in our dataset. 
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c. Checking of model adequacy for the data 

The goodness-of-fit is assessed in Figure 2.6. We verify the ability of the model to 

reproduce observed summary statistics, defined as the total number of transitions per week 

between observed individual health states for each herd, during a month, when parameters 

are sampled from posterior densities. Sixty-three percent (expected 50%) of observed 

summary statistics lie within the predicted 50% CI and 94% (expected 95%) of them belong 

to the 95% CI of the simulated numbers of transitions.  

6. Discussion 

This study, based on a Bayesian modelling approach, provides the first quantitative 

assessment of parameters describing the spread of C. burnetii within chronically infected 

dairy herds. Previous studies that focused on Bayesian statistical inference of disease 

parameters have already proposed discrete time stochastic epidemic models [88, 114]. 

However, our approach differs from these as it is individual-based. 

The Bayesian framework enables the combination in the same model of previous knowledge 

about C. burnetii (mainly concerning the life expectancy of the bacteria in the environment 

and the proportions of different health states within an infected herd) with information 

coming from the present dataset. Moreover, it allows differences between herds to be 

accounted for in a flexible manner through a hierarchical representation of the processes 

involved. The convergence of the MCMC is not perfect, particularly for the initial real health 

states. Although estimations of these parameters seem biologically consistent, our dataset is 

probably not informative enough to provide good assessments of all inferred parameters. 

However, for most of the parameters, convergence is achieved, the results are biologically 

plausible and the goodness-of-fit is satisfactory overall. Nevertheless, the choice of 

simulated missing data (that is, of cows with unknown health states for the t7-t28 period) 

was made randomly whereas in the field protocol, the selection of the weekly sampled cows 

was not made at random. Moreover, a possible way to improve further the adequacy of the 

model for the data is to consider that the uncertainty on the observed health states would 

differ for each observation as a function of the quantitative results provided by the 

diagnostic tests (S/P ratios for the ELISA and Ct values for the PCR). In fact, dichotomising 

the test result of an ELISA can be unnecessary and, to some extent, counter-productive 

[116]. The relevancy of this option could be explored in further studies.  

As shown by the present results, some chronically infected herds (like herd 3) are 

characterised by a low probability of infection and then a slow spread of the disease while 
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others (like herd 4) are characterised by a quite high probability of infection and then a 

faster infection dynamics. Also, intermittency of shedding is less likely to occur in some 

herds (like herds 1 and 3) but seems usual in others (like herd 5).  

When a cow becomes infected, clearance of the bacterium without seroconversion 

(transitions from I- to S) is very common while the transition from the seronegative to the 

seropositive state (I- -> I+) is very rare, which means that very few cows of the analysed 

dataset seroconverted over the month studied (which did not correspond to the beginning of 

the infection). Moreover, in herds where the infection dynamics is faster, some cows are 

restrained to transitions between the non-infected state and shedding without antibodies 

state (S <-> I-), while others are restrained to transitions between the infectious 

seropositive state and the non-shedding seropositive state (I+ <-> R). Thus, two categories of 

animals seem to exist with two different types of infection response: a response with or 

without any antibody production. Lastly, the antibody status seems to play a major role in the 

involvement of a given cow in the bacterial spread: shedders with antibodies (I+) release 

bacteria for a longer time than animals in the shedding state without antibodies.  

Estimations of the environmental bacterial load are also provided. Although these values do 

not have any obvious biological meaning, they are related to the infection/re-infection 

probability of an animal within an infected herd. Our results do not show if the infection risk 

varies with time but it is likely that some herds (like herd 5 and maybe herd 4 at the end of 

the study) have quite high infection risks. As the present dataset does not contain enough 

information to update significantly the prior distribution of the mortality rate of C. burnetii 

(parameter µ), we cannot claim that this potential high probability of infection is due to an 

ineffective cleaning process of the cattle housing or is directly related to differences in the 

prevalence of shedding cows. Further work is needed to provide relevant indicators of the 

environmental contamination. The time scale of our study is probably insufficient to 

investigate environmental content variations; a period longer than one month is likely 

required. 

The present data do not distinguish real susceptible individuals from non-shedding 

seronegative ones: all are gathered in the unique category S. Thus, the estimated transition 

rate from the non-shedding to the shedding without antibodies state is a mix between an 

infection rate and a re-infection rate. These two rates are different as, in the latter, the 

cell immunity should already have been activated. However, it is not possible with current 

diagnostic tests to differentiate primary infected from re-infected animals. The relevance  
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of cell immunity tests (i.e. skin tests) to study the immunity responses in chronically infected 

herds would be a profitable area of research. 

To conclude, this work provides the first quantitative estimation of key parameters from 

field data based on an original modelling approach, enabling a better understanding of C. 

burnetii infection dynamics within chronically infected dairy herds. Besides the biological 

insights provided by the estimated values of parameters, the outputs can be further used to 

calibrate a simulation model representing the infection dynamics within a cattle herd over a 

longer time scale and assessing the effectiveness of different control strategies for C. 

burnetii infection. 
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8. Supplementary material 

a. Data 

A one-month longitudinal study was carried out in five French dairy cattle herds infected 

with Coxiella burnetii. Table 2.4 provides the number of the individual health states of the 

lactating cows of each herd at the beginning (t0) and at the end (t28) of the follow-up.  

Table 2.4. Description of the five studied herds at t0 and t28 (aggregated data). 

 

 

 

 

 

Examples of individual trajectories for some cows of herd 2 are given below. See paragraph 

4.a. of this section (‘Model and methods’ – ‘Epidemic model’) for the definition of the 

different health states S, I-, I+ and R. 

 

 

S I

- 

I+ R Total S I

- 

I+ R Unknown Total 

1 10 2 5 7 24 5 1 4 7 7 24 

2 23 2 6 18 49 11 5 5 6 22 49 

3 25 2 1 6 34 21 0 0 4 12 37 

4 14 7 4 6 31 21 7 6 2 7 43 

5 28 1 27 23 79 16 2 14 19 30 81 

Herd 

Cow status at t0 Cow status at t28 
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Table 2.5. Evolution of observed individual health states over time  for some cows of the data set. 

Cow number t0 t7 t14 t21 t28 

214 S S S S I- 

218 S S S S S 

220 I+ I+ R I+ I+ 

222 R I+ R R R 

224 R R R R R 

233 I+ I+ I+ I+ I+ 

234 R I+ R R R 

235 S S S S S 

239 I- I- S S S 

240 I+ I+ I+ I+ I+ 

 

b. Likelihood 

From Equations (3.1) and (3.2) of the main text and considering that all variables are 

categorically distributed (i.e. they follow a multinomial distribution with the parameter n 

fixed at 1), the likelihood function of the complete data is given by: 
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c. Convergence of the MCMC algorithm 

Three chains were run: an initial burn-in of 10,000 runs with a thin interval of 600 was 

performed. Then, 50,000 iterations with the same thin interval were run. This thin interval 

ensures that the chains are no longer autocorrelated. All the 50,000 iterations were used to 

assess the posterior distributions. A total of 60 parameters were monitored: 25 for Et,h, the 

environmental bacterial load at every sampling time in each herd, 20 for Jh, the distribution 

of the initial real health states in each herd, five for µ, the herd-dependent mortality rate of 

C. burnetii, five for s, the herd-dependent transition rate for R to I+ and one for ε1, ε2, m, q 

and r, the shedding and transition parameters. Among these 60 parameters, 35 are 

independent: 15 for Jh, five for µ,, five for s, five for p at time 1 of the follow-up and one for 

ε1, ε1, m, q and r.  

Moreover, Table 2.6 provides the Gelman-Rubin convergence diagnostic (or the potential scale 

reduction factor) for these 35 parameters.  



Chapter 2 : Elaboration of the C. burnetii model and estimation of its main parameters 

 

 56 

The JAGS code used to make Bayesian inference is available on request from A. Courcoul 

(aurelie.courcoul@oniris-nantes.fr).  

 

Table 2.6. Median and 97.5% percentile of the Gelman-Rubin potential scale reduction factors 
(PSRF) for the 35 independent parameters of the model. The multivariate PSRF is equal to 1.51. 

 

 

Parameter 
Median 

PSRF 

97.5% 

percentile 

of the 

PSRF 

 Parameter 
Median 

PSRF 

97.5% 

percentile 

of the 

PSRF 

p1: transition rate S => I-  
time 0, herd 1 

1.03 1.03  
µ 4: mortality rate of the 

bacterium, herd 4 
1.00 1.01 

p2: transition rate S => I-  
time 0, herd 2 

1.01 1.02  
µ 5 mortality rate of the 

bacterium, herd 5 
1.01 1.02 

p3: transition rate S => I-  
time 0, herd 3 

1.00 1.01  
J1,1: proportion of S as initial 

real health state, herd 1 
1.10 1.31 

p4: transition rate S => I-  
time 0, herd 4 

1.00 1.01  
J2,1: proportion of S as initial 

real health state, herd 2 
1.05 1.17 

p5: transition rate S => I-  
time 0, herd 5 

1.01 1.02  
J3,1: proportion of S as initial 

real health state, herd 3 
1.01 1.03 

m: transition rate I- => S  1.01 1.02  
J4,1: proportion of S as initial 

real health state, herd 4 
1.00 1.01 

q: transition rate I- => I+ 1.00 1.01  
J5,1: proportion of S as initial 

real health state, herd 5 
1.27 1.74 

r: transition rate I+ => R 1.01 1.02  
J1,2: proportion of I- as initial 

real health state, herd 1 
1.00 1.00 

s1: transition rate R => I+ - herd 1 1.04 1.13  
J2,2: proportion of I- as initial 

real health state, herd 2 
1.00 1.00 

s2: transition rate R => I+ - herd 2 1.08 1.23  
J3,2: proportion of I- as initial 

real health state, herd 3 
1.02 1.08 

s3: transition rate R => I+ - herd 3 1.00 1.02  
J4,2: proportion of I- as initial 

real health state, herd 4 
1.00 1.01 

s4: transition rate R => I+ - herd 4 1.01 1.03  
J5,2: proportion of I- as initial 

real health state, herd 5 
1.02 1.08 

s5: transition rate R => I+ - herd 5 1.14 1.42  
J1,3: proportion of I+ as initial 

real health state, herd 1 
1.00 1.00 

ε1: quantity of bacteria shed by an 

I- per week 
1.01 1.03  

J2,3: proportion of I+ as initial 
real health state, herd 2 

1.00 1.00 

ε 2: quantity of bacteria shed by an 

I+ per week 
1.08 1.24  

J3,3: proportion of I+ as initial 
real health state, herd 3 

1.03 1.10 

µ1: mortality rate of the 

bacterium, herd 1 
1.03 1.10  

J4,3: proportion of I+ as initial 
real health state, herd 4 

1.00 1.01 

µ 2: mortality rate of the 
bacterium, herd 2 

1.04 1.13  
J5,3: proportion of I+ as initial 

real health state, herd 5 
1.01 1.03 

µ 3: mortality rate of the 
bacterium, herd 3 

1.00 1.00  
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d. Posterior and prior distributions of transition and shedding 

parameters 

Figure 2.7 provides the prior and posterior distributions of four of the five transition rates 

between health states (p, m, q, r and s) and of the two shedding parameters ε1 and ε2. As p, 

the transition rate from S to I- (which represents the infection risk) and s, the transition 

rate from R to I+ (which represents the intermittent shedding) are assumed to be herd-

specific, five posterior distributions (one per herd) are given for these two parameters. For 

all these parameters, the posterior distributions cover shorter intervals than those defined 

by the prior distributions, which reveals that the data provide some information. 

 

 

 
Figure 2.7. Prior (dotted black line) and posterior (solid lines) distributions of the model transition 

parameters: transition rate from S to I- (p), transition rate from I- to S (m), transition rate from 
I- to I+ (q), transition rate from I+ to R (r), transition rate from R to I+ (s), quantity of bacteria 

shed by an I- individual in a week (ε1) and quantity of bacteria shed by an I+ individual in a week 
(ε2). 

 

p : transition rate S => I- (per week) – time 1 m : transition rate I- => S (per week) 

q : transition rate I- => I+ (per week) 
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 r : transition rate I+ => R (per week)  

s : transition rate R => I+ (per week)  Quantity of bacteria shed by I- and I+ (per week)  
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e. Posteriors and priors of the environment 

Figure 2.8 provides the posterior distributions for the environmental bacterial load (E) for 

each herd at each time and for µ, the mortality rate of the bacterium (which comprises the 

natural mortality of the bacterium and its removal in relation to the periodic cleaning of the 

cattle housing carried out by the farmer). For the initial environmental bacterial load and for 

µ, priors are also given. 

 

 

 

Figure 2.8. Posteriors of the environmental bacterial load (E) and of the mortality rate of the 
bacterium (µ). For the initial environmental bacterial load and for µ, priors are also drawn (black 

dotted line). For the initial environmental bacterial load, posterior distributions cover shorter 
intervals than those defined by prior distributions, which reveals that the data provide some 

information. This is not the case for µ. 
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Environmental bacterial load - 4 weeks later 

Environmental bacterial load - 2 weeks later 

Environmental bacterial load – time 0 Environmental bacterial load – 1 week later 

Environmental bacterial load - 3 weeks later 

Mortality rate of the bacterium (per week) 
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f. Summary statistics for the initial real health states 

At the prior level, the initial real health states, )(
,
i
h0R , are random variables with a probability 

distribution specified by J, where )( )(
, j
i
h0x xRPJ

j
==  with xj Є {x1= S, x2=I-, x3=I+, x4=R}. 

Table 2.7 provides summary statistics of posterior distributions for marginal probability 

distributions of initial real health state. 

 

 Table 2.7. Priors and posteriors for the probability of initial real health states (J) in each of the 

five herds. For the marginal prior and posterior distributions, medians and 95% credible intervals 
(CI) are shown. 

 

Posterior median and 95% CI 
Model parameter Prior distribution 

Herd 1 Herd 2 Herd 3 Herd 4 Herd 5 

0.327 0.439 0.688 0.524 0.306 
Probability that the initial health 

state of cow i is S 

0.380 

(0.120 – 
0.706) 

(0.159 - 
0.521) 

(0.300 - 
0.581) 

(0.533 - 
0.818) 

(0.359 - 
0.685) 

(0.205 - 
0.425) 

0.062 0.031 0.032 0.189 0.015 
Probability that the initial health 

state of cow i is I- 

0.082 

(0.003 – 

0.369) 
(0.004 - 

0.194) 

(0.001 - 

0.109) 

(0.001 - 

0.134) 

(0.071 - 

0.347) 

(0.000 - 

0.064) 

0.237 0.140 0.079 0.143 0.336 
Probability that the initial health 

state of cow i is I+ 

0.261 
(0.054 – 

0.593) 
(0.107 - 

0.410) 

(0.060 - 

0.256) 

(0.020 - 

0.189) 

(0.059 - 

0.265) 

(0.233 - 

0.449) 

0.351 0.377 0.183 0.129 0.333 
Probability that the initial health 

state of cow i is R 

Dirichlet 

(3.5,1,2.5,2) 

0.203 
(0.031 – 
0.528) 

(0.184 - 

0.549) 

(0.243  -

0.523) 

(0.082 - 

0.323) 

(0.048 - 

0.252) 

(0.219 - 

0.456) 
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REPRESENTATION OF THE HETEROGENEITY OF 

SHEDDING IN THE MODEL OF WITHIN HERD 

SPREAD OF C. BURNETII AND 

IDENTIFICATION OF THE MOST INFLUENTIAL 

PARAMETERS OF THE INFECTION DYNAMICS 
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In the first section of this chapter, we will briefly describe how different population 

heterogeneities affect infection dynamics in many diseases, which are the implications for 

control purposes and how modelling accounts for these heterogeneities. In the second 

section, the variability of the shedding routes, duration and levels observed in data set A 

will be detailed. Then, some generalities will be provided on the approaches allowing 

identification of the most influential parameters of an infection dynamics. These key 

parameters are indeed of major importance: once identified, they have to be accurately 

assessed to improve both the model prediction and the understanding of processes 

involved in the infection spread; also, interventions impacting them are of great interest. 

The last section will describe our model of within herd spread of C. burnetii (with the 

representation of the individual variability of the shedding routes, duration and levels) and 

the sensitivity analysis performed. This part will be presented as it was submitted to 

Journal of Theoretical Biology.  

 

I- Why and how to represent heterogeneity in host 

population? 

When modelling the spread of an infection in a population, average quantities (e.g. average 

duration of infectiousness, average number of contacts with congenerics, average quantity 

of pathogen shed, etc.) are most of the time used as parameter values. This generic 

representation is acceptable as a first approach for providing a global view of the 

transmission process. However, populations are heterogeneous and individuals can have 

different physiological or behavioural characteristics, which are worthy to be taken into 

account. As an example, Diekmann & Heesterbeek [36] assume that in a population, the 

infectivity differs between individuals. Once epidemic growth takes off, all the values of 

infectivity are represented among the many infectious individuals and it is acceptable to 

work with the mean value of infectivity when describing the infection dynamics. However, 

it is not the case during the very first stages of infection where the values of infectivity 

of the few infected individuals have a great impact on the evolution of infection.  
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1. Two classic examples of heterogeneity in human 

diseases: sexually transmitted infections and 

childhood diseases 

Host heterogeneity is well described in Sexually Transmitted Infections (STIs), for which 

high and low-risk individuals can be defined depending on their number of sexual contacts. 

By having many sexual partners, high-risk individuals have a higher risk of both contracting 

and transmitting the disease than low-risk ones. Therefore, models representing the 

spread of an STI should include several classes of individuals, and are more complex than 

models with assumed homogeneous host population [77]. One of the key parameters for 

direct-transmitted infections is the transmission rate, often denoted by β, defined as the 

rate per unit of time at which a susceptible, S and an infectious, I, individuals come into 

effective contact (i.e. a contact which leads to a new infection). This parameter can be 

seen as the product of the rate of contact between the two individuals and the probability 

that this contact will induce a new infection. In a standard SIS model where the population 

is assumed globally homogeneous (see chapter 2 section I for more details on different 

model structures), there is only one parameter β, whereas in an SIS model with two 

classes of individuals (high-risk and low-risk groups), there are four distinct β: 

transmission rate from high-risk individuals to high-risk ones, from high-risk to low-risk, 

from low-risk to high-risk, and from low-risk to low-risk. Thus, in an SIS model with two 

classes of individuals, there are more equations and parameters than in a standard SIS 

model. However, incorporating such heterogeneity in the model has several advantages: the 

infection prevalence can be determined for each of the different classes and used to 

define more efficient targeted control measures [163]. Besides, the basic reproduction 

ratio R0
3 from structured models is generally larger than if the structures were ignored 

and all individuals had the same transmission rates [77].  

Other well studied infections requiring partitioning of the host population are childhood 

diseases, such as measles or mumps. In this case, the distinction between classes is based 

on age rather than on the number of contacts with congenerics. Such diseases are common 

in childhood but rare for adults: indeed, in addition to an increased susceptibility, the 

                                                 
3 The basic reproduction ratio (or basic reproductive number) is the expected number of 

secondary cases that a single infected individual will cause when introduced into a naïve 
population (i.e. a population with no immunity to the disease) and in the absence of control 

measures. When R0 < 1, the infection will die out in the long run. When R0 > 1, the infection will 

be able to spread in the population [36]. 
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individuals who mix most with children (i.e. especially other children), are at the greatest 

risk [77]. In these models, the population is subdivided into a number of discrete 

compartments, classified depending on hosts’ age and individuals progress through 

increasingly older age classes. 

This type of models can also be used for animal diseases. As an example, Ferguson et al. 

[46] used an age-structured model when describing the spread of the prion responsible for 

the Bovine Spongiform Encephalopathy (BSE) through the cattle farms of the United 

Kingdom. Their model included many sources of heterogeneity: each cow was indexed by 

two variables, age and time-since-infection, on which transmission rates and susceptibility 

were dependent. Following the inclusion of this double dependence, the model became very 

complex. However, given the economic and public health importance of the BSE epidemic, it 

was crucial to achieve a high degree of accuracy [77]. 

2. Superspreading events occur in many infectious 

diseases 

Large variations in infectiousness have been described for many infectious diseases, and 

especially for the Severe Acute Respiratory Syndrome (SARS). In the Singapore epidemic, 

of the first 201 probable cases reported, 103 were infected by just five source cases 

[89]. These individuals that directly infect a large number of other people are called 

superspreaders. The definition is here not age-related and the infectiousness4 and 

susceptibility5 of superspreaders seem not correlated, contrary to those of individuals 

infected by STIs. Lipsitch et al. [89] showed that the presence of superspreaders, and 

then the large variation in the effective reproduction number R6 had a great influence on 

the early course of the epidemic: the variability in  the effective reproduction number R 

means that many infected individuals transmit few or not at all while some transmit a lot. 

The probability that a single infected individual will result in a large epidemic is therefore 

                                                 
4 The infectiousness of an individual describes its ability to transmit the infection to other 
hosts. 
5
 The susceptibility of an individual describes its ability to get the infection from other hosts. 

6 The effective reproductive number R is the number of secondary cases generated by a single 
infected case once the epidemic is underway (i.e. the population is not fully susceptible). In the 

absence of control measures, R = R0 x, where x is the proportion of the population susceptible. 

During the course of an epidemic, R declines because of the depletion of susceptibles in the 
population and the implementation of specific control measures. To stop an outbreak, R must be 

maintained below 1 [89].  
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lessened compared to the case where the value of R is the same on average but presents 

less variation. However, if the epidemic occurs, it can be very explosive.  

The superspreading, although a key point in the 2003 SARS epidemic, was seldom 

represented in models until recently [48]. The 20/80 rule [169], which suggests that 

roughly 20% of the most infectious individuals are responsible for 80% of transmission, 

has been applied mainly to helminthic and sexually transmitting infections but not to other 

directly transmitted diseases. In 2005, Lloyd-Smith et al. [91] reassessed heterogeneous 

infectiousness. They considered that the infectiousness was distributed continuously in 

any population and that distinct homogeneous risk groups could not be defined a priori. In 

their model, the expected number of secondary cases caused by a particular infected 

individual (parameter equivalent to the R of Lipsitch et al. [89]) was drawn from a 

continuous probability distribution with population mean R0, and superspreading events 

corresponded to realizations from the right-end tail of this distribution. Using contact 

tracing data from eight directly transmitted diseases, they showed high variation in 

individual infectiousness for most of the data sets. Model predictions accounting for this 

heterogeneity differed from average-based approaches, with disease extinctions more 

likely and outbreaks rarer but more explosive in the former case. Besides, control efforts 

targeting highly infectious individuals outperformed population-wide measures. 

In a similar way, Matthews et al. [105] showed that British cattle infected by Escherichia 

coli O157 was characterised by a high variability in bacterial shedding concentrations and 

consequently in infectiousness: a model assuming that all farms and all animals are 

governed by the same underlying dynamics was unable to explain the highly overdispersed 

distribution of prevalences of Escherichia coli O157 shedding on Scottish farms [106]. The 

best fit to the prevalence data was obtained when incorporating variability in transmission 

rates at the animal level. This variability was both within host (i.e. variability over time for 

the same animal) and between hosts. In fact, 20% of the variance in bacterial counts could 

be attributable to host-to-host variation. Besides, the authors showed that 20% of the 

infections with the higher mean infectiousness contributed around 80% of the 

transmission. Effective control strategies would then consist of (i) targeting the super 

shedders (i.e. the most infectious individuals): preventing infection in 5% of the individuals 

with the highest mean infectiousness would bring R0 below 1; and (ii) targeting bacterial 

carriage at high concentrations: limiting the bacterial load at 104 cfu/g (count 

corresponding to the top 6% of observed counts) would produce 48% of reduction in 

transmission, which would decrease R0 below 1. 
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A different way to take into account superspreading was proposed by James et al. [69], 

through an event-oriented approach in which every individual had the potential of 

extensive spreading. Superspreading events (SSEs) were seen as stochastic consequences 

of environmental variability. James et al. [69] compared their model with the model of 

Lloyd-Smith et al. [91]: for most of the data sets, there was little difference in the Akaike 

information criterion7, which illustrated that none of these models was clearly favoured 

over the other. The implications for control proposed by both groups of authors were 

different. For James et al. [69], as infections caused by non-SSEs could be relatively 

insignificant, targeted control policies based on reducing the frequency or severity of 

SSEs had to be implemented. The frequency of large gatherings of people or animals could 

be decreased by reducing the duration of working/school week or the frequency of animal 

markets. Moreover, to reduce the severity of SSEs, the maximum number of people (or 

animals) gathering together should be reduced. As these control measures did not require 

indentifying superspreaders, they were easier to implement than those proposed by Lloyd-

Smith et al. [91] (i.e. targeting highly infectious individuals). However, the ‘reality’ of 

superspreading should lay somewhere between the event-oriented and individual-oriented 

approaches and modelling, both individual heterogeneity and rare SSEs being important 

challenges for the future [69]. It has to be highlighted that both models agreed about the 

consequences of superspreading phenomena: they cause less frequent but more explosive 

outbreaks. Garske et al. [50] also draw those conclusions when studying the impact of 

superspreading on patterns of disease outbreaks. Besides, these authors showed that 

outbreak sizes distributions were a less and less adapted guide to estimate R0 of an 

infection as heterogeneity increases. Further studies on the extent and consequences of 

heterogeneity in infectiousness are then required.  

We have just shown that identifying superspreaders would be useful [48]. However, such a 

task is very difficult to achieve in practice. As summarized by Lloyd-Smith et al. 

(Supplementary information of [91]), hosts, pathogens and environmental factors all 

contribute to variation of infectiousness. Contact rates are a key point: superspreaders 

are often noted to have high numbers of occupational or social contacts, or an activity that 

facilitates pathogen dispersion, such as food handling. Evolution of highly-transmissible 

pathogen strains is also possible although little studied. Besides, crowded or confined 

                                                 
7 Akaike's information criterion is a measure of the goodness of fit of an estimated statistical 

model. The AIC is not a test of the model in the sense of hypothesis testing; rather it is a test 
between models - a tool for model selection. Given a data set, several competing models may be 

ranked according to their AIC, with the one having the lowest AIC being the best. 



Chapter 3: Representation of the heterogeneity of shedding and identification of the most 
influential parameters 

 68 

settings, as well as the delay before an infectious patient is isolated, have a strong 

influence on individual infectiousness. Lastly, host-pathogen interactions affect 

transmission rates via variation in symptom severity and in pathogen load or shedding. 

Identifying factors such as age, genetic, diet or other management factors that might 

lead to high levels of shedding would then be of great interest [105].  

 

II- The heterogeneity of shedding in C. burnetii 

infections 

In cattle herds infected by C. burnetii, shedding routes are often not concomitant and the 

titres in C. burnetii are highly variable between shedders. In addition, some cows, mostly 

highly-seropositive, shed in milk with a persistent shedding pattern [59]. Based on this 

knowledge, our model was rendered more realistic by representing this special type of 

shedders (called I+ milk pers) and the shedding routes and levels for each shedder type (I-, 

I+ and I+ milk pers). The partitioning of the population into these different categories was 

made on a probabilistic basis and the values of the discrete probability distributions 

controlling it were based on observations from data set A presented in Chapter 1.  

This section provides some details on the observed distributions of shedding routes and 

levels for I-, I+ and I+ milk pers cows in order to (i) highlight, if any, differences between 

those three types of shedders and (ii) feed the mathematical model. Besides, as the 

uterus and mammary glands of females are sites of chronic C. burnetii infection [107], a 

second objective was to determine if the calving had an impact on these distributions. 

Therefore, we separately analysed the data regarding the cows which calved in the month 

before the sampling and the data of those which calved more than a month before.  

1. Shedding routes 

According to our data set, seven shedding route categories were defined: shedding in (i) 

milk only (“Milk”), (ii) vaginal mucus only (“Muc”), (iii) faeces only (“F”), (iv) milk and mucus 

(“Milk+Muc”), (v) milk and faeces (“Milk+F”), (vi) mucus and faeces (“Muc+F”), (vii) milk, 

mucus, and faeces (“all routes”). 

The variability in the shedding routes was noticed both within cow (i.e. over time for a 

given cow) and between cows. Over 47 I- and I+ cows observed shedders twice one week 
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apart, only 53.2% were allocated at the 2nd time of shedding to the same shedding route 

category as the 1st time. Almost half of them were shedders in milk only; the other half 

were shedders is mucus only. Only one cow was observed shedding in milk and mucus twice 

one week apart. 

As shown in Figure 3.1, there is a significant difference between the shedding route 

distributions of I- and I+ individuals, for cows which calved more than a month before 

(Fisher test, p-value < 0.001): I-  cows mostly shed in mucus only (43% of cases) and milk 

only (34% of cases) whereas I+ animals shed preferentially in milk only (61% of cases). For 

cows which calved in the month before the sampling, there is no significant difference 

between I- and I+ cows.  

 

Figure 3.1. Distribution of the shedding routes with respect to the type of I cow. 
In black: I-  (11 samples for the recently calved cows, 97 for the other ones); in grey: I+ (14 

samples for the recently calved cows, 151 for the other ones);in hatched: I+ milk pers(8 samples 
for the recently calved cows, 82 for the other ones) 

 

For both I+ and I+ milk pers individuals, there is a significant difference between the 

shedding route distributions of cows which calved more than a month before and cows 
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which calved in the month before the sampling (Fisher tests, p-value < 0.001): cows which 

recently calved, shed less often in milk only. There is no significant difference between 

these two types of cows for I- individuals. 

Thus, based on the analysis of our data, we chose for the I+ and I+ milk pers animals 

different probability distributions for cows which calved more than a month before the 

sampling and for cows which calved in the month before the sampling. Therefore, we used 

five different probability distributions in the model for the shedding routes (see Table 3.1 

of section IV): one for the I- cows, two for the I+ cows, and two for the I+ milk pers cows.   

2. Shedding levels 

In the real-time PCR, the quantification is relative and based on the Ct (cycle threshold) of 

an endogenous internal positive control, the GAPDH. Since for the faeces samples, there 

are not enough cells, an exogenous positive control is used and no quantification is 

performed. Therefore, only shedding levels in milk samples and vaginal swabs are 

presented.  

Like for the shedding routes, the observed variability in the shedder levels is both within 

and between individuals. However, the former is less frequent: over 33 cows shedding 

through the same route twice one week apart, 69.7% shed the 2nd time in the same 

shedding level category as the 1st time. 

The distributions of the shedding levels for the different types of I are presented Figure 

3.2. Most of the I- individuals shed at low titres, whatever the shedding route and moment 

of calving. For the I+ individuals which calved more than a month before, the shedding level 

distribution in milk samples significantly differs (i) from the one in mucus samples for the 

same kind of cows, and (ii) from the one in milk samples for cows which calved in the 

previous month (Fisher tests, p-value < 0.001). There is no significant difference between 

the shedding level distributions in milk and mucus samples for recently calved cows, 

whatever the type of I. Most of I+ milk pers individuals shed in mid titres except recently 

calved cows shedding in mucus (Fisher test, p-value < 0.001). These latter more often shed 

in low titres.  

According to the descriptive statistics analysis of our dataset, five different probability 

distributions for the shedding levels were considered in the model (see Table 4.1 in section 

IV): as the probability distributions for all the I- and for the I+ mucus shedders which 

calved more than a month before did not differ significantly, the same probability 
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distribution Q1 was used for these types of animals. Different probability distributions 

Q2 and Q3 were respectively defined for the I+ milk shedders which calved more than a 

month before, and for the I+ cows which calved in the previous month whatever their 

shedding route. Lastly, we used a probability distribution Q4 for the I+ milk pers mucus 

shedders which calved more than a month ago and a probability distribution Q5 for all the 

I+ milk pers milk shedders which calved more than a month ago and for the I+ milk pers which 

calved in the previous month. 
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III- Why and how to perform a sensitivity analysis? 

When building a model, the modeller has often several possibilities of model structures to 

answer his questions. It is then crucial to understand the impact of specific 

parameterizations on the outputs. Concerning model parameters, two situations may 

schematically occur: either many different values or no quantitative information are 

available in the literature or from expert opinions. Although ideally this uncertainty could 

be reduced by collecting more data, this is not always possible in practice. It seems then 

essential to investigate the way uncertainties of different orders propagate on the 

outputs variables [30], especially if the model aims at advising policy makers. 

These two aspects can be explored through sensitivity and uncertainty analysis. Sensitivity 

analysis “is the study of how the variation in the output model can be apportioned, 

qualitatively or quantitatively, to different sources of variation, and of how the given 

model depends upon the information fed into it” [140]. It allows ordering by importance 

the strength and relevance of the inputs when studying the variation in the output. The 

uncertainty analysis quantifies the uncertainty in the outcome of a model. In other words, 

sensitivity analysis determines the relationships between information flowing in and out of 

a model. And in this sense it should be distinguished from the uncertainty analysis which 

quantifies the variability of the output due to the incomplete knowledge of the system but 

does not link this variability to the variability of the different inputs. 

1. Aims of sensitivity analyses 

Sensitivity analysis has a wide range of goals [140]. First, it allows determining if the 

model has the expected behaviour. If the model is strongly dependant on a priori non 

influential factors8 or, conversely, if the variation of a priori highly influential factors has 

no impact on the model outputs, there is a need to revise the model structure or 

parameter values. Sensitivity analysis also allows to define the most important factors, 

which, if fixed to their most likely value, would lead to the greatest reduction in the 

variance of the output [30]. This is called factors prioritization setting and helps prioritize 

research needs in terms, for instance, of data acquisition. Besides, sensitivity analysis can 

be useful to simplify the model: the non influential factors can be either eliminated from 

                                                 
8 “Factor” is defined as any input included in the sensitivity analysis. It can be a parameter, an 

input variable, or a module of the model [140].  
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the model or fixed to any value of their domains without significantly increasing the output 

variability. This latter point is called factors fixing setting. At last, sensitivity analysis 

allows determining the region of the space of inputs factors with the largest model 

variation and to detect interactions between factors.  

2. How to perform sensitivity analysis? 

The first step is to determine which input factors will be considered for the analysis. This 

choice depends on the question in study and on the available knowledge on the modelled 

system. Then, for each input factor, the range of variation and either the factor levels 

(i.e. the possible factor values within the variation range) or the factor probability 

distribution should be defined. The third step consists of generating factor combinations 

which will be used as inputs when running the model. This step is a crucial one and many 

methods (not detailed here) are available to design experiments. For example, if the 

factors are defined through probability distributions, the selection of samples from these 

distributions can be made randomly or by Latin Hypercube sampling9. When factors are 

defined by discrete levels, complete or fractional factorial designs can be used10. The 

fourth step is to run the model and then to determine the value of the output of interest 

for each combination of input factors. At last, the influence or relative importance of each 

input factor on the output variable has to be assessed. Different methods are available 

and the choice is not easy as each technique has its strengths and weaknesses.  

3. Types of methods11 

When the model is computationally expensive or has a large number of input factors, 

screening methods are useful. They allow identifying the factors that control most of the 

output variability but are only qualitative: the input factors are ranked by order of 

importance but the methods do not quantify the relative difference between factors. 

                                                 
9 The range of each input factor is divided into N intervals of equal marginal probability 1/N, 

and for each input factor one point is generated in each interval. There are then N non-
overlapping realizations for each of the input factors [140].   
10

 A full factorial experiment is an experiment whose design consists of two or more factors, 
each with discrete possible values or "levels", and whose experimental units take on all possible 

combinations of these levels across all such factors. If the number of combinations in a full 
factorial design is too high to be logistically feasible, a fractional factorial design may be done. 

In this case some of the possible combinations are omitted, according to specific rules 
established to render feasible the estimation of desired effects (main effect, second order 

interactions, etc.) 
11 The description of the following methods is based on Cariboni et al. [30] and Saltelli et al. 

[140]. 
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Typical screening designs are one-at-a-time (OAT) experiments: the effect of the 

variation of a single factor is estimated keeping all the others fixed at their estimated 

values. This type of method does not allow estimating factor interactions as only one 

factor varies at each time. An exception is the OAT design proposed by Morris: the 

experiment covers the entire space over which the factors may vary, whereas in standard 

OAT experiments, the factors vary only around their nominal values (Figure 3.3). For each 

factor i at the given point x of the sampling space is calculated an elementary effect 

defined as ( )
∆

∆ )(),...,,,,...,( xyxxxxxy
xd k1ii1ii

i
−+

= +−  with y the output and x=(x1, 

x2, …, xk) a selected point in the sampling space. The mean of the elementary effects of a 

given factor measures its overall effect on the output while the standard deviation 

accounts for interactions.  

 

Figure 3.3. Space sampling in grid for Morris OAT and in cross for standard OAT;  
b1 and b2 are two inputs factors. 

 

Local analysis is a quantitative method which usually consists of calculating partial 

derivatives of the output functions with respect to the input factors. This method takes 

into account only small variations around the factor nominal values and is usable only for 

linear models.  

Global approaches allow assessing the effect of an input factor on the output variation 

when all the other input factors are varying. They are suitable for non linear and/or non 

additive models and allow measuring the sensitivity over the entire range of each input 

parameter. The output variance can be decomposed in order to impute to each input factor 

its contribution. Different techniques exist: a factorial decomposition of the model 
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variance by an analysis of variance (ANOVA), Sobol’s decomposition, and Fourier Amplitude 

Sensitivity Test (FAST). The two latter are widely-used even computationally costly. They 

allow quantifying Vi , the amount of output variance explained by each input factor i. 

Sensitivity indices Si, representing the main effect of factor i, can then be defined as the 

ratio )(YV
Vi , with V(Y) the output variance. When interactions are also considered, a 

total effect index STi can be calculated to account for all the contributions to the output 

variation due to factor i (its main effect plus all its interactions). The ANOVA also allows 

calculating sensitivity indices but with this method, the sensitivity analysis is based on an 

approximation of the model by a simpler linear model [113]. As an example with two input 

factors Z1 and Z2, the response variability can be decomposed as follows: 

∑ ∑∑∑ ++=




 −

b ba

2
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2
b
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2
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mm

,
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 abŶ  denotes the model response when z1 = a and z2 = b, µ = ••Ŷ is the general mean, m is 

the number of possible values for a and b, µα −= •aŶa  is called the main effect of 

factor Z1  when z1 = a et µβ −= •bb Ŷ  is the main effect of factor Z2 when z2 = b and 
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Although sensitivity analyses are widely-used for deterministic models, adaptations of 

these methods for stochastic models are still in progress and no consensus on the steps to 

be followed is currently available. One of the possible approaches is to consider as outputs 

the mean and standard deviation of the output of interest over the repetitions of the 

model. Besides, all the previously described methods are well-defined for non dynamical 

outputs. However, in epidemiological models, it seems useful to identify the factors most 

influencing the entire dynamics of infection. Global sensitivity analysis could be applied 

separately on each time point of each output, but successive dates enclose relative 

SST: total 
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redundant information and also interesting features of the dynamic may be missed out. In 

order to jointly consider all the points of time series in the sensitivity analysis, Lamboni et 

al. [82, 84] developed a new method based on principal component analysis and on analysis 

of variance. A generalized sensitivity index is computed for each model parameter. The 

proposed index synthesizes the influence of the parameter on the whole time series 

output. As described in the following section, this is the approach we adopted for the 

sensitivity analysis of the model of heterogeneity of shedding in C. burnetii spread in a 

herd that we developed. 
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1. Abstract 

Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. 

Ruminants, especially cattle, are recognized as the most important source of human 

infections. Although a great heterogeneity between shedder cows has been described, no 

previous studies have determined which features such as shedding route and duration or 

the quantity of bacteria shed have the strongest impact on the environmental 

contamination and thus on the zoonotic risk. Our objective was to build a model 

representing the spread of C. burnetii within a dairy cattle herd, taking into account the 

heterogeneity of shedding and to identify key parameters whose variation highly 

influences the infection dynamics.  

We proposed an individual-based stochastic model in discrete time describing the evolution 

of the infection representing both the individual variability of the shedding duration, 

routes and intensity as well as herd demography. To compare the influence of the 

epidemiological parameters on different temporal outputs, we performed a sensitivity 

analysis consisting of a Principal Component Analysis followed by an ANOVA. Our findings 

showed that the most influential parameters were the probability distribution governing 
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the levels of shedding, especially in vaginal mucus or faeces, the characteristics of the 

bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching 

the environment), and some physiological parameters related to the intermittency of 

shedding (transition probability from a non shedding infected state to a shedding state) or 

to the transition from one type of shedder to another one (transition probability from a 

seronegative shedding state to a seropositive shedding state).  

Our study seemed crucial for the understanding of the infection dynamics. As control 

measures should impact the parameters influencing the infection dynamics most, our model 

can now be used to assess the effectiveness of different control strategies for C. burnetii 

infection within dairy cattle herds. 

2. Introduction 

Q fever is a worldwide zoonosis caused by Coxiella burnetii. This intracellular bacterium 

infects a wide range of animals and is associated with reproductive disorders in domestic 

ruminants [5, 20, 26, 98]. Goats, sheep and cattle are recognized as the main source of 

human infection [96, 109, 142, 164]. Infected animals shed bacteria through various routes 

(parturition products, faeces, urine, vaginal mucus, milk) [10, 20, 57]. As the bacterium 

survives very well in the environment, humans can get infected by inhaling contaminated 

dusts or aerosols. This was recently experienced in the Netherlands where more than 

3,000 cases were reported since 2007 [159]. Although Q fever is asymptomatic in humans 

in more than 60% of cases, it can lead to acute or chronic infections and cause flu-like 

syndrome, hepatitis, pneumonia, endocarditis or abortions [52, 128]. Hence, for public 

health and economic and animal health concerns, it is important to control C. burnetii 

infections in livestock herds.  

In C. burnetii infections, a great heterogeneity between shedders has been described [15, 

37, 131]: the shedding duration and routes, as well as the level of shedding (i.e. the 

quantities of bacteria shed) are variable between cows. According to Guatteo et al. [59], 

cows can shed sporadically or persistently, the shedding routes are rarely concomitant and 

the concentrations of bacteria shed in vaginal mucus or milk can vary from less than 100 

Bacteria/g to more than 1,000,000 B/g. Heterogeneity of shedding is known to affect 

infection dynamics in many diseases [104] but it is generally difficult to determine which 

of its aspects are the most influential. The length of shedding, its route, the quantity of 

bacteria shed, or other features may all have the strongest impact on the environment 

contamination by C. burnetii and thus on the zoonotic risk in the case of Q fever infection.  
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A representation of the disease spread within a herd as well as the identification of key 

parameters characterizing the heterogeneity of shedding are thus critical for the 

understanding of the infection dynamics. In addition, the effectiveness of a control 

measure was shown to be dramatically improved by targeting the individuals transmitting 

the pathogen most (e.g. in the case of Escherichia coli O157 infection [105], of measles 

epidemics [50] or of Salmonella transmission [86]). However, understanding and predicting 

the spread of C. burnetii in a herd or identifying such key parameters cannot be assessed 

by field experiments alone. In this context, mathematical models are useful tools for 

understanding how the infection spreads within the herd and how various inputs (such as 

epidemiological characteristics of infected animals) affect the dynamics [97]. Techniques 

such as sensitivity analysis allow assessing the impact of the uncertainty and variability in 

the parameters on models outputs and hence determining key factors [140]. It consists in 

studying how the variation in the outputs of the model can be apportioned to different 

sources of variation, and how the model depends upon the information fed into it.  

The aim of our study is first to build a model representing the spread of C. burnetii within 

a dairy cattle herd, taking into account the heterogeneity of shedding and second to 

determine the key parameters related to this heterogeneity whose variation highly 

influences the infection dynamics. The model that we will present is, to our knowledge, the 

first one proposed in the literature for Q fever spread coupling epidemiological aspects 

(mainly heterogeneity in shedding) with herd demography. The sensitivity analysis that will 

be described, followed by the presentation and the discussion of the results, is an original 

approach allowing dealing with temporal outputs. 

3. Model 

a. General description  

The epidemic model that we developed describes the spread of C. burnetii within a dairy 

cattle herd, considering different health statuses, which are defined by excretion of 

bacteria, immunity and various characteristics related to the shedding route and the 

quantity of bacteria delivered in the environment (Figure. 3.4 and Table 3.1 for the 

parameter description). The herd demography is included through interaction of lactation 

and gestation statuses with shedding. The model is stochastic, individual-based and in 

discrete time with a time step of one week, which is appropriate for both epidemiological 

and herd management processes. The stochasticity has two main sources: for each 

individual, all the transitions between health states are supposed stochastic and the 
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quantities of bacteria shed in the environment follow discrete distributions, different 

according to the shedding route. 

� Health states and their associated transitions 

Each cow is in one of the six mutually exclusive health states at a given time (Figure. 3.4): 

S (susceptible, non-shedder without antibodies), I- (shedder without antibodies), I+ 

(shedder with antibodies), I+ milk pers (shedder with antibodies, shedding in milk at higher 

levels and for a longer period of time than I+, as described by Guatteo et al. [59]), C+ (non-

shedder with antibodies), C- (non-shedder without antibodies which was infected and had 

antibodies in the past). All shedding cows I are subdivided according to their shedding 

routes: (1) I1, milk only, (2) I2, vaginal mucus and/or faeces, (3) I3, both.  

 

 

Figure 3.4. Flow diagram describing the modelled spread of C. burnetii within a cattle herd. The 
health states are: S, susceptible, non-shedder cow without antibodies, I-, shedder cow without 

any antibodies, I+, shedder cow with antibodies, I+ milk pers shedder cow with antibodies shedding 
in milk in a persistent way, C+, non-shedder cow with antibodies and C-, non-shedder cow without 

antibodies which was infected and had antibodies in the past. I- and I+ cows are in the shedding 
route category 1 if they shed in milk only, 2 if they shed in vaginal mucus/faeces only and 3 if 

they shed in milk and vaginal mucus/faeces. I+ milk pers cows are in the shedding category 1 if they 
shed in milk only and 3 if they shed in milk and vaginal mucus/faeces. E represents the 

environmental bacterial load. The model parameters are presented in Table 3.1. ε1, ε2 and ε3 are 
the quantities of bacteria shed during a time step by an individual I-, I+ and I+milk pers 

respectively and contaminating the environment. These quantities are the sum of all quantities 
of bacteria shed by all the shedders through all the shedding routes Qty, times ρ the fraction 

of bacteria shed reaching the environment of the herd. 
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As shown in Figure 3.4 and matrix Mt below, by inhaling bacteria contained in the 

environment, a susceptible cow, S, can become infectious, I-, with probability p (expressed 

at each time step as )(exp tE1 −−  where Et is the quantity of bacteria in the environment 

of the herd at time t). Either it manages to eliminate the bacterium and becomes 

(apparently) S again (transition probability m) or it produces antibodies and continues 

shedding (transition probability q). It can then become I+ or I+ milk pers with rate pIp. When 

it stops shedding, it becomes C+ (transition probabilities r1 and r2 respectively). Since the 

shedding can be intermittent as observed in experimental and field studies [59, 131], a 

transition from C+ to I+ is assumed (transition probability s). A C+ individual can also clear 

the infection, loose its antibodies and become C- (transition probability τ). If this 

individual is infected again, its humoral immunity is assumed to be immediately reactivated 

and it becomes I+ again (without passing through the I- state) with the same probability as 

an individual in state S.  

� Heterogeneity of shedding 

Both shedding routes and levels of shedding are taken into account in our model. We 

assume that the probability distribution corresponding to the assignment to one of the 

three categories of shedding routes defined above is different for each infectious state 

I-, I+ or I+ milk pers (probability distributions denoted by α, β and γ). As the quantification of 

C. burnetii is not available in the faeces samples, the distribution of the associated titers 

of bacteria is assumed to be similar to the distribution of the titers in the mucus samples. 

Besides, we assume that shedding in vaginal mucus or in faeces have the same impact in 

terms of contamination of the environment (same ρ equal to ρ mf, ρ being the fraction of 

bacteria shed reaching the environment of the herd). Therefore, these two excretion 

routes are gathered into a single category. Concerning the shedding levels, three 

categories are represented: low, moderate and high level shedding, corresponding 

respectively to a quantity of bacteria Qty of 1/3000, 1/30 and 1 unit of environment. The 

probability to shed at one of these levels (represented by the probability distributions Q, 

described in Table 3.1) depends on the infectious state (I-, I+ or I+ milk pers) and on the 

shedding route (milk or mucus/faeces). Both the distributions Q and the ratios between 

the Qty were determined based on field data (R. Guatteo 2009, pers. comm.). 

The quantity of bacteria arriving into the environment during a time step represents the 

sum of Qty times ρ ��for all the shedders releasing bacteria through all the shedding routes. 

This last parameter is assumed to be lower for shedding in milk, ρ milk, than for shedding in 
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mucus/faeces, ρ mf (i.e. a lower proportion of the bacteria shed in milk is supposed to arrive 

into the environment of the herd, because most of the milk is directly sent to the bulk, 

and then to the dairy industry). It has to be stressed here that animals in the third 

category ( −
3I , +

3I  and persmilk
3I
+

 respectively) are assumed to contribute through two 

simultaneous shedding routes to the filling up of the environment, namely milk and 

mucus/feces. 

� Infection dynamics 

The temporal dynamics of the individual health states is modelled using Markovian 

transitions. Let )(i
tR Є {S, −

1I , −
2I , −

3I , +
1I , +

2I , +
3I , 

persmilk
1I
+

, 
persmilk

3I
+ , C+, C- } be 

the health state of individual i at time t. )(i
tR  depends on )(i

1tR −
and on tE , the quantity of 

bacteria in the environment at time t. The transition probabilities can be contained in the 

matrix Mt=(mt,jk):  

 

where )( )()(
, j

i
1tk

i
tjkt xRxRPm ===

−
 for t=1,...,Tmax, k,j=1..11, {x1= S, x2=

−
1I , x3=

−
2I , 

x4=
−
3I , x5=

+
1I , x6=

+
2I , x7=

+
3I , x8= 

persmilk
1I + , x9=

persmilk
2I + , x10=C+, x11=C-}. The 

probabilities of categorical distributions α, β and γ verify the conditions α1+ α2+ �α3 = 1, 

β1+ β2+� β3 = 1 and γ1+ � γ3 = 1. 

As the environmental bacterial load at time t, Et, is dependent on E and the prevalences of 

shedders ( persmilk
t3

persmilk
t1t3t2t1t3t2t1 IIIIIIII +++++−−−

,,,,,,,, ,,,,,,, ) at time t-1, the 

environment dynamics can be expressed by the equation: 

( ) ∑ ∑
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ratiomfmilk *ρρ =  and 
ijkltn ,

 ~ ( )( )kjicijkt QNMultin ,,, , . ijkN  represent numbers of animals in 

corresponding health states at time t and ( )kjicQ ,,
 are the probability distributions 

governing shedding levels, which are not necessary distinct for each state (for instance, as 

explained above, based on field data, we assumed that 

( ) ( ) 1faecesmucuscalvingpostweeks4Icfaecesmucuscalvingpostweeks4Ic
QQQ ≡=

>> +− /,   ,/,   ,
). 

� Herd demography 

The epidemic model is coupled with a model of herd demography. Only cows (neither heifer 

nor calf) are represented in our model. No lactating cow is purchased by the farmer. Thus, 

only S primiparous cows which have just calved (former heifers becoming lactating cows) 

are assumed to enter the herd. These introductions of animals can occur at any time of the 

year. However, if at time t, the size of the herd is above 1.15 times the initial size, we 

assume that no heifer is introduced at this time.  

The culling rate depends on the lactation number. The culling of animals can occur at any 

time of the year. However, if at time t, the size of the herd is below 0.85 times the initial 

size, it is assumed that no cow is culled at this time. 

For each cow, we represent the lactation/gestation cycle. We consider a calving-calving 

interval of 55 weeks. The lactation cycle is composed of 47 weeks of lactation starting at 

calving followed by 8 weeks of dry period. The gestation cycle is composed of a non 

gestation period of 15 weeks starting at calving followed by a gestation of 40 weeks.  

Table 3.2. Description of the parameters of the herd demography model and their standard 
values. 

Description 
Standard 

value 

Replacement rate (year-1) 0.355 
   

lactation 1 0.0057 

lactation 2 0.0052 

lactation 3 0.0065 

lactation 4 0.0067 

Culling rate (week-1) 

lactations 5&6 0.0161 
   

lactation 1 0.337 

lactation 2 0.252 

lactation 3 0.173 

lactation 4 0.11 

lactation 5 0.088 

Probability distribution at time 0 

for the lactation numbers of the 

cows 

lactation 6 0.04 
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� Interactions between epidemiological processes and herd demography 

Dry cows can not become I+ milk pers and a I+ milk pers cow becoming dry can stay either in 

persmilk
1I +

 or in 
persmilk

3I +
 but she is assumed not to shed any bacteria into the 

environment through milk. A dry cow becoming or staying I- or I+ is necessarily in sub 

category 2 (shedding in vaginal mucus and/or faeces). As shown in Table 3.1, the date of 

calving also impacts the probability distributions (α, β, γ  and Q) of shedding sub 

categories for I+ and I+ milk pers cows. 

Regarding the abortions, cows in gestation can abort during the 3 weeks following infection 

or resumption of shedding (which can occur during a transition from S to I-, from C+ to I+ 

or from C- to I+). Abortions can occur at any time of the gestation. It is assumed that a 

cow can abort only once in her life. If a cow aborts in the first or second third of 

gestation, she sheds at that moment a moderate quantity of bacteria in the mucus/faeces 

shedding route, whereas if the abortion occurs in the last third of gestation (late 

abortion), she sheds a high quantity of bacteria in the same shedding route. In addition, if 

a cow aborts in the first or second third of gestation, the non gestation period is reduced 

to 8 weeks (instead of 15 weeks after a normal calving or a late abortion). If a cow aborts 

after the week 22 of gestation, it starts a new lactation. If she aborts before, her 

current lactation continues for a maximum of 50 weeks of lactation. Afterwards, she is 

dried off. 

At last, from mid-March to mid-November, we assume that cows in lactation and dry cows 

are not kept all together. Therefore, two types of environment are defined: Ebuilding is the 

environmental bacterial load of the main buildings and close pastures for lactating cows, 

while Edry is the environmental bacterial load of the specific pastures of dry cows. The 

probability of infection is thus different for lactating and dry cows during this period 

(pbuilding and pdry respectively). Outside this period, there is only one compartment 

environment in which all the cows (lactating and dry) shed their bacteria. This environment 

is Ebuilding. 

b. Initial conditions and parameter values of the standard 

scenario 

At t=0, the herd consists of 50 cows. To initiate the infection cycle, a primiparous I+ cow 

which has just calved is introduced into a wholly susceptible herd.  
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The epidemiological parameters are put at their standard values (Table 3.1): parameters m, 

q, r1, s and µ come from a study where they were estimated through Bayesian inference 

using data from five French chronically infected dairy cattle herds [35]; probability 

distributions of shedding related parameters, α, β, βcalv, γ, γcalv, Q1, Q2, Q3, Q4 and Q5, 

were qualitatively calibrated to match field data (R. Guatteo 2009, personal 

communication). The parameters governing the demography and herd management (Table 

3.2) were chosen to represent a standard French dairy cattle herd. 

To account for the variability in Q fever infections, 200 repetitions of the same scenario 

were run over a 5-year simulation period. 

4. Sensitivity analysis 

a. Outputs and factors 

We conducted a sensitivity analysis to identify the parameters that mostly contributed to 

the output variability. Various scenarios were run, each of them being characterized by a 

specific combination of parameter values, in order to relate the variability obtained for 

the outputs to that induced by the input parameters. Eight outputs were considered (Table 

3.3): (i) Ebuilding, (ii) Edry, (iii) the prevalence of milk shedders, (iv) the prevalence of 

mucus/faeces shedders, (v) the prevalence of shedders in milk in a persistent way, (vi) the 

seroprevalence, (vii) the number of abortions per herd per year, and (viii) the extinction 

rate. All these outputs except the number of abortions and the extinction rate were 

computed weekly over a 5-year period. 

Parameters related to the herd demography were fixed at their nominal values of Table 

3.2 since demography and herd management processes are considered as well known. The 

sensitivity of the model outputs was evaluated with respect to the epidemiological 

parameters, which are those given in Table 3.1, except for τ. These 19 parameters are thus 

the inputs of the sensitivity analysis and they will be called factors in the rest of the 

paper. They belong to two categories: parameters concerning the transitions between 

health states and the environment (m, q, pIp, r1, r2, s, µ) and parameters directly related 

to the heterogeneity in shedding (i.e. α, β, βcalv, γ, γcalv, Q1, Q2, Q3, Q4, Q5, ρmf and ratio 









mf

milk

ρ

ρ ). The parameters in the first category were estimated from field data 

previously [24], but some uncertainty still remains (due for instance to the limitation of 

the data). They were included in the sensitivity analysis but with relatively limited ranges 
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of variation. In this study we focused on the latter category of parameters because they 

directly describe heterogeneity related aspects, which represented our main objective.  

Table 3.3. Description of the outputs of the sensitivity analysis. 

Output name Description 

Ebuilding 
Environmental bacterial load of the main buildings and close 
pastures 

Edry 
Environmental bacterial load of the specific pastures for the dry 
cows 

Prevalence of milk 
shedders 

Proportion of animals of the herd shedding in milk, i.e. 

N

IIIIII persmilk
3

persmilk
13131

++++−− +++++
(*) 

Prevalence of 
mucus/faeces shedders 

Proportion of animals of the herd shedding in vaginal mucus and/or 

faeces, i.e. 
N

IIIII persmilk
33232
+++−− ++++

 (*) 

Prevalence of shedders in 
milk in a persistent way Proportion of animals I+ milk pers, i.e. 

N

II persmilk
3

persmilk
1

++
+

 (*) 

Seroprevalence 

Proportion of animals with antibodies, i.e. 

N

IICIII persmilk
3

persmilk
1321

++++++ +++++
 (*) 

Number of abortions per 

herd per year 
 

Extinction rate 
Proportion of runs of a particular scenario leading to an extinction 

of the infection (**) 
* N denotes the herd size 
** the infection is assumed extinct when there is no I and C+ left until the end of the simulation time 

 

b. Design of experiments 

All the designs were generated using R 2.10.1 [127] and PLANOR R package [27]. 

� First experiment 

We used a fractional factorial experiment design, with four parameter values (called 

levels) per factor related to the shedding and two levels for the other parameters (values 

in Table 3.1). As our model is stochastic, we ran the model for each combination of factor 

levels 30 times. Since the complete factorial design would lead to too many combinations 

(exactly 30 x 412 x 27 simulations), a fractional factorial design of resolution V was chosen. 

Such a design allows estimating the main effects and two-factor interactions, provided 

higher order interactions are assumed to be negligible [18, 80]. In the present case, a 

design was obtained with 4,096 scenarios. Thus, we ran 122,880 realizations of the model 

(i.e. 30 repetitions for each of the 4,096 scenarios). 
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� Second experiment 

A complete factorial design for the eight most influential factors according to the first 

experiment was performed. This enabled us to more accurately quantify the impact of the 

interactions between these eight factors and also to disentangle potential confounded 

main effects and interactions. Besides, we determined in this experiment the factors that 

mostly contributed to the variability of the extinction rate between repetitions. The 

remaining 11 parameters were put to their standard value (Table 3.1). For this second 

study, we ran 2,048 scenarios with 30 repetitions each. 

� Third experiment 

In a third analysis, the influence of factors Q was specifically explored. Since the 

probability distributions Q depend on the type and route of shedding, this analysis enabled 

us to explore which type of shedders (I-, I+ or I+ milk pers) and which type of shedding route 

(milk or mucus/faeces) played a major role in the variability of the outputs. Thus, the 

probability distributions of the shedding levels were varied independently, which 

generated 10 factors. Probability distributions Q* were recorded as follows: for milk and 

mucus/faces respectively, Q1* and Q2* refer to the distributions of the shedding levels 

for the I-, Q3* and Q4* refer to those for the I+ after 4 weeks post-calving, Q5* and 

Q6* are similar to the two former but correspond to the 4 first weeks post-calving, Q7* 

and Q8* refer to the distributions of the shedding levels for the I+ milk pers after 4 weeks 

post-calving, and finally Q9* and Q10* are the symmetric of Q7* and Q8* for the 4 first 

weeks post-calving. Thus, former factor Q1 of first and second experiments corresponds 

to new factors Q1*, Q2* and Q4*, former factor Q2 to Q3*, former factor Q3 to Q5* 

and Q6*, former factor Q4 to Q8* and former factor Q5 to Q7*, Q9* and Q10*.  

A fractional factorial design for the 10 new factors Q* with four levels each was 

generated. These four levels were (0.85, 0.15, 0), (0.6, 0.4, 0), (0.25, 0.25, 0.5) and (0.15, 

0.6, 0.25) for the probability to be in (low, mid, high) shedding level respectively. The 

other parameters were put to their standard values given in Table 3.1. For this third 

experiment, we ran 1,024 scenarios with 30 repetitions each. 

c. Analysis of the temporal outputs (of the first, second and 

third experiments) 

In order to compare the influence of factors on the seven outputs which exhibit temporal 

dynamics (all outputs except the extinction rate), we applied a method developed by 
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Lamboni et al. [82] and used by Lurette et al. [95] to identify key parameters influencing 

Salmonella infection dynamics in a pig batch. The results are recorded as tables with one 

row for each scenario and one column for each output time points (260 weekly time points 

for the first six outputs and five annual time points for the abortion number). 

This method allows simultaneously analyzing potentially correlated variables (here the 

successive time points of a given output). It consists in two main steps. First, a Principal 

Component Analysis (PCA) is operated in order to provide linear combinations (or 

components) of the initial variables (here the columns of our tables) explaining the 

maximum of inertia (i.e. variability) between scenarios. Only the first three principal 

components (PC) were kept since they are sufficient to cover most variability amongst 

simulations. The PCA provides to each line of the tables a score on each component. The 

second step involves an ANOVA, including the main effects and the two-factor 

interactions for all factors and carried out on the scores of each of the components 

considered. Sensitivity indices (SI), corresponding to the main effect or to interactions, 

and total sensitivities (TS), corresponding to the sum of the main effect and the 

interactions, were calculated for each factor and for each component. This analysis was 

performed with R 2.10.1 [127] and multisensi R package [83].  

The analyses were performed on both the mean and standard deviation of the 30 

repetitions of each scenario, in order to assess the two sources of variability influencing 

the outputs: the model intrinsic stochasticity and the parameter variability generated by 

the factorial designs.  

d. Analysis of the extinction rate (of the second experiment) 

An ANOVA was performed to assess the influence of the eight most influential factors on 

the extinction rate. It was calculated for each scenario defined by the complete factorial 

design of the second experiment.  

e. Analysis of the outputs at a the time point 260 (of the 

first, second and third experiments) 

In order to determine the factors with the highest influence on the output variability as a 

whole, we performed a joint analysis on the values of the six dynamic outputs (first six 

lines of Table 3.3) at the last simulation time step (week 260). This time point was chosen 

to illustrate the long-term steady-state of the system. Thus, the two-step analysis (PCA 

followed by ANOVA) was performed twice on six output variables. The first analysis was 
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done on the mean and the second on the standard deviation of the 6 dynamic outputs at 

time 260. 

5. Results 

a. Infection dynamics of the standard scenario 

Over the 200 repetitions of the standard scenario, 37 led to the extinction of infection 

(defined as the absence of animals in I or C+ states in the herd) occurring on average in 

week 56 after the introduction of the initial infected cow (min: week 11, max: week 171). 

The mean seroprevalence and the mean prevalences of shedders increased with time 

(Figure 3.5) to reach respectively 34.7% on average [0 – 57.1% for the percentiles 2.5% 

and 97.5% respectively] and 35.5% [0 – 61.7% for the percentiles 2.5% and 97.5% 

respectively] five years after the initial infection. The ratio between the mean prevalence 

of shedders and the mean prevalence of milk shedders was around 2.5 in the first weeks 

of simulation, then it decreased to reach 1.84 at the end of the simulation time. The mean 

environmental bacterial load Ebuilding increased with time corresponding to a mean transition 

probability from S to I-, pbuilding, equal to 0.43 at the end of the simulation time. On the 

contrary, the mean environmental bacterial load Edry was close to 0 for the 5 years of 

simulation (results not shown). The median abortion number was equal to 2 per herd per 

year the first year and 3 per herd per year afterwards, but a large variability surrounded 

these values [0-9 for the percentiles 2.5% and 97.5% respectively]. In addition, as shown 

in Figure 3.6, the route and the level of shedding of a shedder cow had a great impact on 

the contamination of the environment. This result is an unsurprising consequence of the 

model parameterization. As expected, the most common low level shedding category did 

not contribute much to the increase of the environmental bacterial load. On the contrary, 

shedders in mucus/faeces of the mid level category and shedders in milk of the high level 

category filled the environment in a non negligible way. Above all, shedders in 

mucus/faeces of the high level category (both non aborting and aborting cows) had the 

greatest impact. 

b. Influence of the epidemiological factors on the model 

outputs 

The results obtained with 30 runs for each parameter set were robust: the mean and the 

percentiles 2.5, 50 and 97.5 of our outputs were similar to those obtained with 200 runs 

(results not shown). 
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Figure 3.5. Temporal dynamics of the seroprevalence, prevalence of shedders, prevalence of 

milk shedders and environmental bacterial load Ebuilding: mean (grey plain line), median (black 
plain line) and percentiles 2.5 and 97.5% (black dotted lines). 

 

 

Figure 3.6. Number of shedders for each shedding route and each shedding level and their 
contributions in terms of contamination of the environment. Example according to the results 

from a given run at a given time. 
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� First experiment 

As shown in Table 3.4, since the inertia obtained for the first PC was very high for each of 

the model outputs (except in the joined analysis), only the results on the first PC are 

presented. For the two mean environmental bacterial loads, the factors Q1 (the probability 

distribution of the shedding levels for all the I- and for the I+ shedding in mucus/faeces 

after 4 weeks post-calving), µ (the mortality rate of C. burnetii) and ρmf (the proportion of 

bacteria shed through mucus/faeces filling the environment compartment) were the most 

influential ones. For the mean prevalences of mucus/faeces and milk shedders, the most 

sensitive factors were q (the transition probability from I- to I+), s (the transition 

probability from C+ to I+  representing the intermittency of shedding) and Q1, whereas 

the mean prevalence of milk shedders in a persistent way was mostly impacted by pIp (the 

proportion of cows going from I- to I+ and becoming I+ milk pers), q and r2 (the transition 

probability from I+ milk pers to C+). Concerning the mean seroprevalence, the factor q had a 

TS higher than 60%. Lastly, the most influential factors of the mean abortion number 

were q, Q1, s, µ and ρmf. Globally, the most sensitive two-factor interactions (with a SI 

higher than 5%) were Q1:q on the variability of the abortion rate, Q1:, ρmf:Q1, ρmf:µ on the 

variability of the environmental bacterial loads and q:pIp, q:r2, pIp:r2 on the variability of 

the prevalence of milk shedders in a persistent way.  

Concerning the variability of the standard deviations of the outputs, the same factors as 

above were identified as the most influential ones for the environmental bacterial loads, 

the prevalence of milk shedders in a persistent way and the abortion number. The main 

effect of the factors was always very low (no SI higher than 5%) on the prevalences of 

mucus/faeces shedders, whereas the part of two-factor interactions was much more 

important. The most sensitive factors were Q1, q, ρ mf and Q3 (the probability distribution 

of the shedding levels for all the I+ in the 4 first weeks post-calving). Regarding the 

standard deviation of the prevalence of milk shedders, the most sensitive factors were q, 

Q1 and α (the probability distribution of the shedding routes for the I- cows).  

For the joined analysis on six of the dynamic outputs at time 260, the inertia obtained for 

the first PC was much lower and the second PC had to be taken into account. For the 

means, the most influential factors were Q1, q, s, µ and ρ mf on the first PC and Q1, µ, ρ mf 

and q on the second one, by order of importance. For the standard deviation, the most 

sensitive factors were q, Q1, r2 and Q3 on the first PC and Q1, ρ mf and µ on the second.  
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Figure 3.7. Sensitivity analysis on the mean prevalence in mucus/faeces shedders over time: 
results of the ANOVA performed for the first component (inertia: 93.9%). (A) Loadings 

defining the principal component for each time variable (in abscissa) and total sensitivities for 
the 10 most influential factors ranked in descending order. Sensitivities are split in main effect 

(black) and two-factor interactions (grey). (B) Sensitivity indices of the 15 main factorial terms 
(main effects or interactions) in descending order. 
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� Second experiment 

The eight factors chosen in the second experiment (appearing as the most influential 

according to the findings of the first experiment) were Q1, Q3, q, s, r2, µ, ρ mf and pIp. The 

results obtained were globally similar to the results of the first experiment described 

above (same most influential factors, sometimes in a slightly different order), suggesting 

that no important interactions were confounded with the main effects in the first analysis.  

Besides, the most sensitive factors on the extinction rate were firstly Q1 and µ (with a SI 

higher than 14%) then q, s, and Q3 (with a lesser SI, but higher than 5%). The most 

sensitive two-factor interactions were Q1:q and Q1: µ. 

� Third experiment 

Amongst the probability distributions of the shedding levels, Q2*, characterizing the 

mucus/faeces seronegative shedders was globally the most influential factor on the 

variability of the outputs (Table 3.5 and Figure 3.8). Q4* and Q6*, the probability 

distributions of the shedding levels for mucus/faeces seropositive shedders at anytime 

also had a significant impact and, to a lesser extent, Q1*, the probability distribution of 

the shedding levels associated to the milk seronegative shedders and Q8*, the probability 

distribution of the shedding levels for persistent milk shedders excreting in 

mucus/faeces. Moreover, the only interaction among the five most sensitive terms was 

Q2*:Q4*. Overall, the factors with the greatest impact were probability distributions of 

the shedding levels in mucus/faeces. 

6. Discussion 

In this study, we proposed the first model of C. burnetii spread within a dairy cattle herd 

taking into account the individual variability of shedding, defined in duration, routes and 

intensity. Simulated infection dynamics are consistent with field data: at the last time 

point of the simulated time series (five years after the introduction of the initial 

infectious case), the mean seroprevalence is around 35% [23.3% – 47.8% for the 25th and 

75th percentiles respectively], which is consistent with the mean observed seroprevalence 

in cows (mean: 40%, 25th and 75th percentiles: 25% and 51% respectively) of 56 naturally 

infected French dairy herds [149]. At the same simulated time point, the mean prevalence 

of shedders is around 35.5% [0 – 61.7% for the percentiles 2.5th and 97.5th respectively] 

whereas in the field, the apparent proportion of shedder cows is 45.5% in Guatteo et al. 

[57] and 38.9% in Rodolakis et al. [131]. 
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Figure 3.8. Sensitivity analysis of the means of six of the outputs (all except the abortion 

number) for the last simulation time point (week 260): results of the ANOVA performed for 
the first principal component (inertia: 80.5%). (A) Loadings defining the principal component for 

each time variable (in abscissa) and total sensitivities for the 10 probability distributions Q 
ranked in descending order. Sensitivities are split in main effect (black) and two-factor 

interactions (grey). (B) Sensitivity indices of the 15 main factorial terms (main effects or 
interactions) in descending order. 
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The second and main part of our study consisted of a sensitivity analysis. This approach aims 

at improving the understanding of complex systems such as stochastic epidemiologic models 

with a view to suggesting possible targeted control strategies in livestock infections [43, 93, 

156] or to assessing the effect of varying the input parameters on the economic impact 

associated with the disease [28, 165]. 

To perform sensitivity analyses, we used complete and fractional factorial designs. 

Alternative approaches are available (see for example [140] or [113]), but factorial designs 

are very convenient to control which main effects and interactions can be estimated and to 

manage a mixture of qualitative and quantitative factors. In the present study, some factors 

(α, β, βcalv, γ, γcalv, Q1, Q2, Q3, Q4 and Q5) were not scalars but probability distributions. 

Performing a sensitivity analysis with such types of factors is to our knowledge little known. 

We used multinomial distributions with three classes and defined the modalities of each such 

factor as four alternative sets of multinomial probabilities. This choice allowed flexibility as 

well as a fine control in the probability distributions that were simulated. 

To cope with the dynamic and multivariate outputs of the model, the PCA+ANOVA approach 

[82] offered additional insight compared to single sensitivity analyses. Multivariate 

decomposition methods other than PCA could be used, but the key idea is that sensitivity 

analyses are now performed on synthetic and meaningful output variables. As the infection 

dynamics is composed of two phases (see on Figure 3.5 an initial phase of rapid evolution 

followed by a kind of steady state), the parameters influencing the dynamics may not be the 

same between the phases. We additionally performed a preliminary sensitivity analysis on the 

very initial phase of infection (first 26 weeks; results not shown). The most sensitive factors 

during the first 15 weeks were highly influenced by the initial conditions but very fast 

afterwards, the same factors as in experiments one or two were identified as the most 

influential ones. We then chose to conduct our study on the whole simulation period. 

Another aspect concerns the stochasticity of our model which generates complex dynamics. 

Hence, attention has to be paid to this point in order to appropriately apply sensitivity 

analysis approaches that are mostly developed for deterministic models. Here, to be able to 

study with confidence how the variation in the outputs of our model can be apportioned to 

the uncertainty of epidemiological factors, we checked that the variability due to the model 

stochasticity (i.e. the within scenario variability) was negligible compared to the variability 

due to the input parameters variability (i.e. the between scenarios variability). More 

specifically, to provide reliable analysis on trends, means were calculated on 30 repetitions. 
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Standard deviations were also considered as they can provide complementary information on 

the most influential factors. 

In summary, the method used has the major advantage of allowing to consider temporal 

varying outputs and thus to identify parameters influencing the dynamics over the 5 year 

simulation period. Moreover, it allows properly dealing with the model stochasticity. 

According to our findings (first and second experiments), we can classify the eight 

parameters that have most influence on the C. burnetii infection dynamics in three 

categories, depending on the dynamics aspects they are involved in. 

The first group, comprising the parameters related to the transition between health states, 

slightly influences the different prevalences and the abortion number. q (transition 

probability from I- to I+) is a physiological parameter associated to seroconversion and it was 

estimated based on data from a follow-up of five chronically infected herds [35]. However, 

we can assume that those five herds do not cover the whole potential range of variability of 

this factor, especially at the beginning of the infection when this parameter probably takes a 

different value depending on how recently the infection occurred in the herd. Further 

experimental or survey studies focusing on the start of the infection dynamics are needed to 

improve the knowledge of this parameter. The parameter s (transition probability from C+ to 

I+), representing the intermittency of shedding, was inferred from data in the same study 

[35] and the estimated values were herd-dependent. It is biologically plausible to assume 

that a control measure such as vaccination could decrease this parameter and then have an 

impact on the prevalence of shedders. However, since, to our knowledge, no data is currently 

available, further studies are needed. The transition probability from I+ milk pers to C+, r2, and 

the proportion of cows going from I- to I+ and becoming I+ milk pers, pIp, have an impact on the 

variability in the prevalence of persistent milk shedders. These parameters were not 

estimated from data, but calibrated so that simulated trajectories of prevalence of 

persistent milk shedders are consistent with field observations. Indeed, following Guatteo et 

al. [59], almost one milk shedder out of three was detected as persistent shedder over three 

months. In our case, the mean prevalence of milk shedders at time point 260 weeks is 3.3 

times the mean prevalence of persistent milk shedders. While pIp seems difficult to be 

decreased, r2, which rules the shedding duration of persistent milk shedders, could probably 

be modulated by control strategies. Although according to Astobiza et al. [16], an 

oxytetracycline treatment would not limit the duration of bacterial excretion in a dairy sheep 

flock, further studies are needed in order to determine if vaccination could decrease the 

length of the shedding period.  
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The second group of parameters that influenced the infection dynamics most is related to 

the characteristics of C. burnetii in the environment. In fact, ρmf (proportion of bacteria 

shed through mucus/faeces filling the environment compartment) and µ (mortality rate of C. 

burnetii) have a strong impact on the environmental bacterial load and to a lesser extent on 

the abortion number. Concerning the parameter ρmf, it is very difficult to quantify in practice 

which proportion of bacteria contained in milk, vaginal mucus or faeces contaminates the 

environment. Thus, we calibrated this parameter to match the environmental bacterial load 

estimated by Courcoul et al. [35]: the posterior medians for the environmental bacterial loads 

of each of the five chronically infected herds were comprised between 0.044 [0.005–0.143 

for the 95% credible interval (CI)] and 0.558 units of environment [0.201–1.278 for the 95% 

CI]. Since those herds did not exhibit any clinical signs, we assumed that the simulated 

environmental bacterial load in herds with abortions should be slightly higher. The median of 

Ebuilding at time step 260 weeks is then 0.56 (with the percentiles 2.5th and 97.5th equal to 0.00 

and 1.44 respectively). Concerning the parameter µ, given that C. burnetii withstands harsh 

environmental conditions [103], its life expectancy (1/µ) within the farm in an infectious form 

was assumed to be five weeks in the standard scenario and two or 13 weeks (two extreme 

values) in the sensitivity analysis. However, this assumption is difficult to verify. Based on 

Dutch studies, it seems that within a month, more than 75% of the manure does not contain 

viable C. burnetii anymore but that the bacterium survives only a few days in the outer layer 

of the manure [161]. It is then difficult to calibrate the parameter µ which represents both 

the natural mortality of the bacterium and its removal due to the periodic cleaning of the 

cattle housing carried out by the farmer. However, it seems possible to influence µ by 

implementing environmental control measures such as increased cleaning of the farm.  

Lastly, as suggested by the results of the first experiment (Table 3.4) and detailed in the 

third experiment (Table 3.5), the parameters which have the greatest impact on the 

infection dynamics are those governing the shedding levels (through their associated 

probability distributions Q*), especially in mucus/faeces.  

As shedding in mucus/faeces much more contaminates the environment as shedding in milk, it 

could seem surprising that the parameters governing the probability distribution of the 

shedding routes (α, β and γ) do not appear to influence the model outputs. This could partly 

be explained by the parameter values used, especially for Qty. The quantity of bacteria shed 

by a high level shedding cow is so high (compared to mid or low levels), that the probability 

distributions governing the levels (such as Q in experiments one and two) are by construction 

more important than those related to the shedding routes. However, although exact values of 
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parameters Qty are unknown, the standard values used in this study were calibrated to field 

data, which tend to support our findings. 

This third experiment was of high interest as it allows highlighting the importance of a sub-

category of animals. Indeed, the factor Q2* (corresponding to the distribution of the levels 

of bacteria shed in mucus/faeces by seronegative shedders) has a strong impact on all the 

outputs, including the shedder prevalences and the environmental bacterial loads. To a lesser 

extent, the factors Q4* and Q6* (corresponding the distributions of the shedding levels in 

mucus/faeces of seropositive shedders) also have a significant impact on the variability of 

the shedder prevalences. The predominance of Q2* over Q4* and Q6* can be explained by 

the larger simulated number of seronegative shedders than seropositive ones. In fact, due to 

the low standard value of q (the transition probability from I- to I+) and the high standard 

value of m (the transition probability from I- to S), the number of seropositive cows is very 

low during the three first years of simulation compared to the number of seronegative cows. 

The standard values of parameters q and m, which were estimated in chronically infected 

herds, are perhaps not perfectly appropriate to describe the initial phase of an infection and 

then could lead to overestimation of the influence of seronegative shedders. As suggested by 

Matthews et al. for Escherichia coli O157 [105], identifying factors such as age, genetics, 

reproductive status or other management factors that might predispose an animal to high 

levels of shedding would be of undisputable interest. Moreover, control measures should aim 

at reducing the proportion of high shedders in mucus/faeces, such as phase I vaccines seem 

to do. According to Arricau-Bouvery et al. [13], vaccination dramatically reduced both 

abortions and excretion of bacteria in the milk, vaginal mucus and faeces. In Rousset et al. 

[136], the vaccine was effective in reducing massive bacterial shedding from a heavily 

infected goat herd. In the same way, Hogerwerf et al. [64] found that in uterine fluid, vaginal 

mucus and milk of vaccinated dairy goats, both the prevalence of shedders as well as the 

concentration of bacteria were reduced. 

7. Conclusion 

This work led to the identification of key parameters in C. burnetii infection dynamics based 

on an original model describing the bacterium spread within a dairy cattle herd composed of 

animals with heterogeneous shedding characteristics. The most influential parameters are 

associated to the probabilities governing the levels of shedding, especially for mucus/faeces 

shedders and to the characteristics of the bacterium in the environment. Some physiological 

parameters related to the intermittency of shedding or to the transition from one type of 
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shedder to another one also play a non negligible role. Our study also highlights parameters 

that have to be precisely assessed and then further investigated to improve the model 

accuracy and the understanding of the infection spread. Besides, interventions impacting 

those key parameters would be of great interest. The model developed here can be further 

used to assess over a longer time scale the effectiveness of different control strategies for 

C. burnetii infection, such as vaccination. 
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I- Why and how to include vaccination in models? 

One of the main objectives of epidemiological modelling is to help public health or animal 

health decision makers designing guidelines for the management of infectious diseases by 

assessing the effectiveness of different control strategies. Various interventions are possible 

and they can be distinguished with respect to their aim. If they aim at preventing contacts 

between infected and susceptible individuals, contact tracing and quarantine can be 

implemented for humans as well as movement ban, market ban, and culling for animals. When 

the decrease in the susceptibility of susceptible individuals and/or the infectiousness of 

infected ones is aimed at, vaccination and prophylactic and/or therapeutic use of medications 

are appropriate measures. Vaccination, which is the topic of this chapter, does not aim to cure 

infected individuals. It consists in a preventive immunization: vaccine contains antigens which 

hopefully induce an immune response in the host, intended to be similar to the consequences of 

an infection. They are assumed to reduce the intensity of clinical signs, and/or to protect from 

the infection, and/or to stop, or at least to limit, the infectiousness when vaccinated 

individuals get infected.  

In the next subsection, we will briefly describe different types of vaccination strategies that 

can be implemented to control human and animal diseases. In subsection 2, an example of 

modelling-based study aimed at vaccine effectiveness assessment will be presented. Finally, we 

will focus in section II on our study on the C. burnetii spread and the assessment by simulation 

of the effectiveness of different vaccination strategies in already infected cattle herds. This 

last part will be presented as it was submitted to the journal Veterinary Research.  

1. Different types of vaccination programmes and 

their representation in epidemic modelling 

For human diseases, pediatric vaccination is usually used to reduce the prevalence of endemic 

diseases like measles, polio or rubella. In a SIR model, it leads to consider that a fraction of 

newborns is effectively vaccinated and directly arrives into the R health state. The modeller 

has also to take into account that vaccines are often not fully efficient and that immunity is of 

limited duration. Therefore, individuals can need boosting. Pediatric vaccination is a long-term 

strategy and does not instantly lead to eradication of the infection [77]. However, a major 

advantage is that not all individuals need to be vaccinated to eradicate the infection. The 

reproduction ratio in a vaccinated population R’ is equal to (1-p)R0 with p, the fraction of 



Chapter 4: Assessment of the effectiveness of vaccination strategies 

 110 

newborns vaccinated and R0 the basic reproduction number of the studied infection. Thus, to 

get R’ < 1, the proportion of vaccinated newborns p has to be at least equal to 1-1/R0. This 

phenomenon is called “herd effect”: the vaccination of a portion of the population provides 

protection to unprotected individuals [70].  

For non endemic infections, a mass-vaccination program can be implemented when there is an 

increased risk of epidemic. In this case, there is a race between the infection spread and the 

vaccination programme and the best way to control the epidemic is a strong and early response 

[77]. The consequence of mass-vaccination in terms of modelling is often the addition of a new 

health state for vaccinated individuals. Mass-vaccination programmes were well-studied for the 

2009 Influenza H1N1 pandemic. As an example, Sharomi et al. [143] showed that in Canada, 

with the estimated vaccine efficacy of 80%, at least 60% of Manitobans needed to be 

vaccinated in order to effectively control the pandemic and that the timely implementation of 

the mass vaccination program was crucial. 

It is also possible to first protect individuals that are most at risk. This strategy is called 

“targeted vaccination” and induces the representation in the model of host risk categories. In 

human diseases, this strategy was used in France during the Influenza H1N1 vaccination 

campaign, where people at risk of developing complications (e.g. pregnant women, young 

children, immunodepressed people, people with chronic broncho-pulmonary affections, etc…) 

were first vaccinated. For animal diseases, vaccination of animals in contact with infectious 

ones or ring vaccination around confirmed cases are other examples of targeted vaccination 

programmes (e.g. the FMD model of Keeling et al. [75]).   

For human diseases, pulse vaccination can also be implemented: it consists in periodic 

vaccination of certain age cohorts [77]. The aim is to maintain the proportion of susceptible 

individuals below the threshold enabling the infection to spread. This type of programme is 

then composed of two stages: a punctual vaccination of a high proportion of children of a given 

range of age, followed by a period (some years) without vaccination. Such programmes are 

logistically easier to implement than continual pediatric vaccination. They can be used for 

childhood diseases like measles [4]. Models are a useful mean to determine the maximum 

permitted interval between pulses function of the epidemiological, demographic and vaccination 

factors [117].  

In animal diseases, vaccination is sometimes implemented in an already infected herd. The aim 

of such a programme can be preventive only: the immunization of the still susceptible 

individuals can decrease the probability of becoming infected, the intensity of their clinical 
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signs and infectiousness if they become infected. For some infectious diseases like the 

Infectious Bovine Rhinotracheitis, vaccinating the already infected animals can also limit their 

clinical signs and infectiousness and therefore be an effective measure to limit the pathogen 

spread [137]. However, as vaccines do not have any curative effect, vaccination is first a 

preventive strategy.  

At last, it has to be highlighted that, when analyzing the results of a simulation model dealing 

with vaccination, decision makers have to keep in mind logistical as well as social and economic 

limitations (e.g. number of vaccine doses available, time required to vaccinate an individual, non 

observance of the vaccine recommendation, etc.).  

2. An example of model aimed at assessing the 

effectiveness of vaccination 

Until recently, models assessing the effectiveness of vaccination were rather little used in 

animal health. They mainly dealt with FMD [75] and rabies [146]. In the recent years, they have 

been developed. They were used for example to assess the potential impact of imperfect 

Salmonella vaccines on the prevalence of infection in infected dairy herds [92], to identify key 

factors influencing the apparent success of vaccination to control Bluetongue virus Serotype 8 

spread in Great Britain [148], and to evaluate different vaccination strategies against 

brucellosis in bison [155] and against BVDV in cattle [144]. 

In order to illustrate in more details the interest of using modelling-based study when 

exploring vaccination strategies, we are now going to present the model of Suppo et al. [146] 

aiming at assessing the effectiveness of two prophylactic methods (contraception and 

vaccination) for rabies control in fox populations. In Europe, fox populations tend to increase, 

which could impede the success of oral-vaccination campaigns because of the growing number 

of susceptible animals. The objective of this study was to determine the potential interest of 

fertility control through the use of baits filled with a contraceptive vaccine in conjunction with 

a rabies vaccine. The model was compartmental, deterministic, and in discrete-time. It took 

into account host heterogeneity: the fox population was structured in age, sex, and health 

state (Figure 4.1). Besides, it was spatially-explicit: a rectangular domain was divided into cells 

corresponding to the size of an average fox’s home range. Demography was simulated either 

exponentially increasing or density dependant through survival and birth rates. Dispersion of 

young foxes was represented: these animals had the possibility to settle in a new cell, the 

probability of settling in a given cell being function of the distance between the former and the 

new cell. The transmission of the infection could occur between foxes living in the same or 
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adjacent cells (this transmission was function of β, the transmission rate from an infectious to 

a susceptible fox), and during dispersal, when infected young foxes reached a new cell.  

 

Figure 4.1. Interaction between the 12 classes of foxes. mn, natural mortality; mr, mortality induced 
by rabies; v, vaccination; d, dispersal; c, contamination 

From Suppo et al. [146] 

 

Two vaccination campaigns per year were simulated as well as fertility-control campaigns, 

occurring once a year and being effective on females during one breading season. Vaccination 

was modelled by adding new compartments for vaccinated animals. Besides, in case of fertility 

control, births were decreased by (1-st), with st the sterilization rate. The initial conditions 

consisted in the introduction of a pair of exposed adult foxes in a single cell located at the 

centre of the domain. Each of the other cells contained a pair of healthy foxes. The 

effectiveness of contraception and vaccination was evaluated for different values of birth and 

transmission rates and for each of the type of population growth (exponentially increasing or 

density dependant). In exponentially increasing populations (which seems currently the case in 

European countries), for 4 to 7 cubs per litter per female, the control of the infection with the 

sterilization programme alone was impossible because the healthy population would go extinct 

before rabies was eradicated. For a programme with only vaccination, the vaccination rate had 

to be high, especially for low transmission rates and high births rates, to lead to rabies 

extinction. In the field, a maximum of 70% of the population can be vaccinated during 
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vaccination campaigns. There were then cases for which vaccination alone failed to eradicate 

the infection. However, a combination of both fertility control and vaccination decreased the 

birth rate to a value requiring a lower vaccination rate and was then effective to eradicate the 

virus. Thus, those results suggested that contraception could be a possible additional method 

to control rabies outbreaks in highly dense fox populations. Nevertheless, the authors 

highlighted the need of further studies including fox culling, changes in spacing strategies 

when fox density increases, and the influence of dispersal in the recovery of healthy 

populations, to draw robust conclusions. 

In the model developed in this example, it was possible to simulate the same control 

programmes (i) in both an exponentially increasing and a density-dependant host population 

growth, and (ii) for different values of birth and transmission rates. The conclusions regarding 

the effectiveness of control measures were different regarding the characteristics of the fox 

population and virus transmission. Therefore, models are a useful tool to assess the 

effectiveness of control strategies in different epidemiological situations. 
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1. Abstract 

Q fever is a worldwide zoonosis caused by Coxiella burnetii which induces reproductive 

disorders in livestock. Ruminants are recognized as the most important source of human 

infection. The control of this infection in cattle is crucial to limit both the infection in livestock 

and the zoonotic risk. Although vaccination is currently advised in the field, the comparative 

relevance of different vaccination protocols in terms of the duration of the vaccination 

campaign and category of animals to be targeted has never been explored. Our objective was to 

compare, by simulation, the effectiveness of three different vaccination strategies in an 

already infected dairy cattle herd.  

We used a stochastic individual-based epidemic model coupled with a model of herd demography 

to simulate three temporal outputs of shedders prevalence, environmental bacterial load and 

number of abortions and to calculate the infection extinction rate. For all scenarios, the 

temporal outputs strongly decreased with time at least in the first years of vaccination. 

However, vaccinating only three years is inadequate to stabilize these dynamic outputs at a low 

level. Vaccination of both cows and heifers is more effective than vaccinating heifers only. For 

heifers only, (i) the outputs decreased much slower and never reached the effectiveness of full 

herd vaccination, (ii) the infection extinction rate is twice as low as well.  
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Besides valuable indications on vaccination effectiveness, our model could also be adapted in 

further studies to simulate and asses other Q fever control strategies such as environmental 

and hygienic measures. 

2. Introduction 

Q fever is a zoonotic disease caused by Coxiella burnetii, a bacterium found worldwide in a wide 

range of animals. In ruminants, the infection may cause abortions, infertility, metritis or 

chronic mastitis [5, 20, 26, 125], which can lead to non negligible economic losses for the 

infected herds. Furthermore, since 2007, Q fever has become an important public health 

problem in several parts of Europe [72, 121, 159]. Although Q fever is asymptomatic in 60% of 

human cases, it can lead to acute or chronic infections and cause flu-like syndrome, hepatitis, 

pneumonia, endocarditis or abortions12. In the Netherlands, where a steep increase in the 

number of human cases was observed in 2007, 2008, and 2009, a link has been established 

between some human cases and farms of small ruminants where abortions due to Q fever were 

detected [141]. Ruminants are indeed recognized as the main source of human infection [54, 

109]. Infected animals shed large quantities of bacteria into the environment through faeces, 

vaginal mucus, urine, milk and especially parturition products [11, 20, 59]. C. burnetii survives 

very well in the environment and contaminates aerosols and dust [167]. These infected particles 

are the main route of infection for both animals and humans. Due to its importance in both 

animal and public health, the control of this infection is crucial. Therefore, any control measure 

leading to a decrease in the prevalence of shedders and in the environmental bacterial load 

seems a key point to limit both the spread of the infection in ruminants and the zoonotic risk.  

Nowadays, in infected cattle herds in France, control measures against Q fever consist of 

environmental measures such as destruction of placentas or disinfection of births locations, 

antibiotic treatment like oxytetracycline injections during the last month of gestation, and 

vaccination [132]. Observations concerning antibiotics are contradictory. In Berri et al. [22], 

antibiotics in sheep suppressed in the long run both the abortions and the shedding of C. 

burnetii, whereas in Astobiza et al. [16], the oxytetracycline treatment neither prevented the 

shedding of bacteria nor limited the duration of bacterial excretion. The EFSA concluded that, 

as antibiotic treatment in animals is not effective in influencing the epidemiology of infection, 

and as widespread antibiotic usage is inadvisable because of the development of resistance, 

antibiotic treatment for C. burnetii infections should be avoided [39]. According to Rodolakis 

                                                 
12 ECDC, Risk assessment on Q fever, (2010) [on line] 

http://ecdc.europa.eu/en/publications/Publications/1005_TER_Risk_Assessment_Qfever.pdf 
[consulted 25 August 2010] 
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et al. [132], vaccination would be an efficient tool to control the disease. Vaccination with a 

phase I vaccine in cattle was shown to suppress the shedding in milk, placenta, uterine fluid, 

vagina and colostrum [25, 139]. More recently, Arricau-Bouvery et al. [13] compared the 

efficiency of phase I and phase II vaccines in goats: the phase I vaccine prevented abortions 

and dramatically reduced the frequency of bacterial shedding in the milk, vaginal mucus and 

faeces, while the phase II vaccine did not affect the course of infection. In Rousset et al. 

[136], the vaccine appeared neither able to prevent infection in exposed kids, nor to clear 

infection in infected goats, but effectively reduced the level of shedding in a heavily infected 

herd. Hogerwerf et al.13 also found that both the prevalence of shedders and the bacterial load 

in uterine fluid, vaginal swabs and milk were reduced in vaccinated dairy goats. Besides, 

according to Guatteo et al. [61], susceptible cattle that were vaccinated when non pregnant had 

a five times lower probability to become a shedder than an animal receiving placebo.  

Thus, in the field, vaccination is often recommended in infected herds after the occurrence of 

abortions due to Q fever. However, the studies assessing the vaccination efficacy in ruminants 

were carried out in experimental conditions or for a limited period of time and they evaluated 

the effect of the vaccine mostly at the individual level. Therefore, it is difficult to extrapolate 

those results to the case of a whole herd vaccination over several years. Another point to 

consider is that vaccination generally takes place in the field in infected herds without any 

preliminary individual diagnostic tests. Some cows may be vaccinated when still susceptible 

while others are already infected. Further studies are needed to assess the overall 

effectiveness of such vaccination programmes in cattle herds. Different vaccination strategies 

can be implemented: the duration of the vaccination programme as well as the category of 

vaccinated animals (e.g., the whole herd or the heifers only) have to be determined. To assess 

the long run effectiveness of these different strategies in reducing the infection prevalence or 

the environmental bacterial load, field studies are not optimal: no reference situation (without 

control strategy) is generally available, and long-term observations must be performed, making 

these studies very costly and even unfeasible. Modelling is therefore a convenient approach as 

it provides means to compare the effectiveness of different potential management strategies 

[77]. The use of mathematical models is nowadays widely used to compare control measures for 

both human [1, 143, 160] and animal infectious diseases [7, 17, 49, 87]. For C. burnetii 

infections, it would allow testing a wide range of vaccination strategies in different initial 

situations.  

                                                 
13 Hogerwerf L., Van den Brom R., Roest H.J., Bouma A., Vellema P., Pieterse M., Dercksen D., Nielen 

M., Vaccination of dairy goat herds reduces Coxiella burnetii prevalence and bacterial load in goat 
excret. Submitted for publication in Emerging Infectious Diseases.  
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The objective of this model study is to assess the comparative effectiveness of several 

vaccination strategies in an already infected dairy cattle herd. The criteria considered for 

efficacy evaluation were changes in the prevalence of shedders, the environmental bacterial 

load, the number of abortions, as well as in the extinction rate of infection.  

3. Materials and methods 

A model representing the C. burnetii infection dynamics in a standard French dairy cattle herd 

and different vaccination strategies was elaborated based on a previous variant model not 

including interventions. First of all, the epidemic model representing the natural course of 

infection (i.e. without any control strategy) will be briefly described, then the inclusion of 

vaccination will be presented and finally, the different vaccination scenarios that we tested will 

be explained in detail. 

a. General description of the epidemic model of the natural 

course of infection 

The model represents the spread of the bacterium in a dairy herd of lactating and dry cows 

(diagram flow in Figure 4.2 and parameters in Table 4.2 of subsection 7. Supplementary 

material). It is a stochastic individual-based model in discrete time with a time step of one 

week. Each cow is in one of the six mutually exclusive health states at a given time: S (non-

shedder apparently susceptible cow), I1 (shedder which has the possibility to eliminate the 

bacterium and become S again), I2 (shedder which does not have anymore the possibility to 

become S again), I3 (shedder which does not have anymore the possibility to become S again 

and which sheds in milk at higher levels and for a longer period of time than I2 – health state 

described in Guatteo et al. [59]), C1 (non-shedder but still infected cow), C2 (non-shedder which 

was C1 in the past but eliminated the bacterium). Moreover, as a great heterogeneity between 

C. burnetii shedders has been described [11, 37, 59, 131], this individual variability in the 

shedding routes and the shedding levels (i.e. the quantities of bacteria shed) is taken into 

account in the model. Sub-categories are then defined for the shedder cows with respect to 

the shedding route. Thus, an I1 or I2 cow can shed in (1) milk only (denoted by m
1I  or 

m
2I respectively), (2) vaginal mucus and/or faeces ( mf

1I  or mf
2I respectively), or (3) milk and 

either vaginal mucus or faeces or both ( mmf
1I  or mmf

2I respectively). In the same way, an 

m
3I sheds in milk only and an mmf

3I sheds in milk and vaginal mucus and/or faeces (by definition, 

an I3 animal always sheds in milk and can not be in the mf
3I  state). 
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Figure 4.2. Flow diagram describing the modelled spread of C. burnetii within a vaccinated cattle 
herd. The health states are: S, non-shedder apparently susceptible cow, I1, shedder which still has 

the possibility to eliminate the bacterium and to become S again, I2, shedder which does not have 
anymore the possibility to become S again, I3, shedder which does not have anymore the possibility 

to become S again and sheds in milk in a persistent way, C1, non-shedder but still infected individual 
and C2, non-shedder which was C1 in the past but eliminated the bacterium. The Ve states (SVe, I1Ve, 
I2Ve, I3Ve, C1Ve and C2Ve) are defined in the same way as S, I1, I2, I3, C1 and C2 respectively, except 
that these animals have been vaccinated when susceptible and non pregnant and are then assumed 

“vaccinated in an effective way” (Ve). I and IVe cows are in the subcategory m if they shed in milk 
only, mf if they shed in vaginal mucus/faeces only and mmf if they shed in milk and vaginal 

mucus/faeces. E represents the environmental bacterial load and p, the probability of infection or 

reinfection for non Ve individuals, is equal to )(exp tE1 −− . pv is the probability of infection or 

reinfection for Ve individuals, which is a fraction of p. The other model parameters are presented 
Table 4.3. of subsection 7. Supplementary material. ε1, ε2, ε3, ε1Ve, ε2Ve  and ε3Ve are the quantities of 

bacteria shed during a time step by an individual I1, I2, I3, I1Ve, I2Ve and I3Ve respectively and 
contaminating the environment. For any shedder, ε represents the sum, for each shedding route, of 

the quantity of bacteria released, Qty, times ρ its fraction reaching the environment of the herd. 
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The possible transitions between health states are represented in Figure 4.2. Shedders (I1 , I2 

and I3) fill the environment compartment (E) with bacteria: the quantity of bacteria arriving 

into the environment during a time step is the sum for all the shedders and all the shedding 

routes of the quantity of bacteria shed, Qty (the shedders can shed at low, moderate or high 

level, Qty being different for each of these levels according to probability distributions Q), 

times ρ the impact of this shedding on the environment (i.e. ρ is the fraction of bacteria shed 

which arrives into the environment of the herd - for more detail see Table 4.3 of subsection 7). 

The probability of infection or re-infection, p (transition from S to I1 or from C2 to I2) is 

expressed at each time step as )(exp tE1 −−  where Et is the quantity of bacteria in the herd 

environment at time t (one unit of Et corresponding to a probability of transition from S to I1 

of (1 - 1/e)). The mortality rate of C. burnetii in the environment, µ, includes the natural 

mortality of the bacterium and its removal in relation to the periodic cleaning of the cattle 

housing carried out by the farmer. 

As abortions are the main clinical signs attributable to C. burnetii infections [132, 135], they 

are also represented in the model: a cow can abort after a transition from S to I1, from C1 to I2 

or from C2 to I2 but only once in her life. If the cow aborts in the first or second third of 

gestation, she sheds through the mucus/faeces a moderate quantity of bacteria Qty, whereas 

if the abortion occurs in the last third of gestation, a high quantity of bacteria is released 

through this shedding route. 

The epidemic model was also coupled to a model of population dynamics in order to represent 

the gestation and lactation cycles of each cow. In short, for each cow the lactation number is 

represented, as well as the stage of lactation, the stage of gestation, the abortion history, the 

health state and the shedding characteristics (if the cow is shedding). 

b. Representation of the vaccination 

Based on Guatteo et al. [61], we assumed that the vaccine is effective when applied to non 

pregnant uninfected individuals. Thus, in the epidemic model, non pregnant S and C2 individuals 

become partly protected when vaccinated and move into the ‘vaccinated in an effective way’ 

(Ve) states (bottom of Figure 4.2). Pregnant S and C2, as well as all I1, I2 and C1 are what we 

defined the uselessly vaccinated: the vaccine has no effect on the infection dynamics in these 

animals, and they keep moving between the states S, I1, I2, I3, C1 and C2 (top of Figure 4.2). Six 

additional health states are defined for the Ve individuals. SVe and C2Ve individuals can get 

infected and become I1Ve or I2Ve respectively with a decreased transition rate pv (equal to a 

fraction of p). Except for this difference between p and pv, the Ve animals can evolve through 

the same health states with identical transition rates as the non Ve animals.  
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Regarding the shedding levels, according to Guatteo et al. [61], the only quantified bacterium 

load of a Ve shedder was lower than the lowest bacterium load of the placebo cows. Besides, in 

Rousset et al. [136], the bacterial loads in vaginal swabs were lower in vaccinated than in non 

vaccinated animals. Therefore, we assumed that no high level shedding is possible for Ve animals 

and that the probability to shed at a low level is increased (expressed through probability 

distributions QVe in Table 4.3 of subsection 7). Finally, based on Arricau-Bouvery et al. [13], it 

was assumed that the Ve cows cannot abort. 

c. Vaccination scenarios 

� Scenario 1: vaccination over the whole simulation period (10 years) 

At the start of the simulation, all the cows are vaccinated and all the heifers entering the herd 

of cows are assumed to be SVe (susceptible and vaccinated when non pregnant). In addition, all 

the animals are boosted every year: there is no loss of immunity and no possible transition from 

the Ve states to the non Ve states. 

� Scenario 2: vaccination for a limited period of time (3 years) 

The assumptions are the same as those of scenario 1 except for the vaccination duration. Here, 

the herd is supposed to be vaccinated for 3 years. At the end of this 3 year period, two 

assumptions regarding the evolution of immunity were explored. 

� Scenario 2A: immunity lasts for one year. One year after the end of the 

vaccination period, the Ve animals loose their immunity and move to the non Ve 

equivalent states (e.g. an I2Ve cow becomes an I2 cow).  

� Scenario 2B: lifelong immunity. After the vaccination period, the Ve animals do 

not loose their immunity and keep moving within the Ve states until the end of 

their life. 

� Scenario 3: vaccination of the heifers only over the whole simulation period (10 

years) 

At the start of the simulation the cows are not vaccinated: they stay in the non Ve states and 

progress through infection states. Only the heifers arriving thereafter are assumed to be 

vaccinated. These animals are in the SVe state when entering the dairy herd. In addition, they 

are boosted every year: there is no loss of immunity and no transition from the Ve states to the 

corresponding non Ve states. 

� Negative control 

No control programme is implemented and all the animals progress through the non Ve states. 
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d. Parameters and initial conditions 

The values of epidemiologic parameters are displayed in Table 4.3 of subsection 7. Parameters 

m, q, r1, s and µ were fixed at their values estimated through Bayesian inference using data 

from five French chronically infected dairy cattle herds [35]; probability distributions of 

shedding related parameters, α, β, βcalv, γ, γcalv, (governing the partition in subcategories 

according to the shedding route) and Q1, Q2, Q3, Q4 and Q5 (characterizing the shedding 

levels), were qualitatively calibrated to match field data. The parameters governing the 

demography and herd management (Table 4.2 of subsection 7) were chosen to represent a 

standard French dairy cattle herd. 

The transition rate pv was parameterized using the probability for an initially susceptible animal 

to become a shedder in Guatteo et al. [61], which is equal to 0.21 with a 95% confidence 

interval of 0.05-0.90. Thus, we performed the simulations with pv=0.21p. However, in scenario 1, 

two additional values were also tested (pv=0.05p and pv=0.90p) in order to determine the 

influence of this parameter value on the model output.  

We simulated 100 repetitions of the introduction of a primiparous I2 cow which has just calved 

into a fully susceptible herd of 50 cows to generate infected herds. We let the model run until 

three abortions had occurred during a period of 12 months to initiate reactive vaccination. This 

limit was motivated by the fact that testing for a large panel of abortive pathogens (including 

C. burnetii) is usually performed in France from the 3rd abortion within the calving period. Thus, 

we obtained 100 so called “initial herds”, different from each other. Then, for each initial herd, 

the three vaccination scenarios and the negative control scenario were run once over a 10-year 

simulation period. 

e. Outputs of the model 

The mean prevalence of shedders, the number of abortions per herd per year and the 

environmental bacterial load were the model’s dynamic outputs of interest. In addition, for 

each scenario, the rate of extinction over the 10 year simulation period was calculated as the 

ratio between the number of extinct trajectories and the total number of repetitions. The 

infection was assumed to be extinct when there were no more I, IVe, C2 and C2Ve cows in the 

herd at the end of the simulation time.  

Moreover, as the vaccine was reported to be effective for susceptible animals only [61], we 

tested whether the vaccination schedules were less effective when applied in heavily infected 

herds. Thus, the extinction rate was separately calculated in scenario 1 for several classes of 

initial prevalences of shedders, or initial prevalences of shedders in milk. The 100 simulated 
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herds were split by threshold prevalences at the 20th and 80th percentiles, resulting in the 

following classes: initial total shedders prevalence of [0-15%], [15%-40%] and [40%-100%] or 

initial milk shedders prevalence of [0-6%], [6%-20%] and [20%-100%]. 

4. Results 

a. Description of the herds at the start the vaccination strategy 

At the start of simulations, the mean prevalence of shedders (over 100 initial herds) is equal to 

28.5% (min: 0.0%, max: 63.8%) and the mean prevalence of milk shedders amounts to 13.3% 

(min: 0.0%, max: 37.9%). In a herd, 92.8% of the cows on average have been shedders for at 

least one time step (min: 40.8%, max: 100%). The mean environmental bacterial load is 0.30 

units (min: 0.02, max: 0.98) and the herds consist of 49.8 cows on average (min: 43, max: 58). 

b. Influence of the vaccination scenarios on the temporal model 

outputs 

If no control strategy is implemented, the mean prevalence of shedders, the mean 

environmental bacterial load and the mean number of abortions increase to a steady state of 

respectively 47%, 1 unit of environment and 4.1 abortions per herd per year. On the contrary, 

for any vaccination scenario, all these outputs decrease with time at least for the first years 

of vaccination (Figure 4.3.a, 4.3.b, 4.3.c). In scenario 1 (vaccination of heifers and cows during 

10 years), the decrease covers the whole period. In scenario 3 (vaccination of heifers only for 

the whole simulation time), the decrease is much slower in the first three years of vaccination 

than in scenario 1: the latter allows reaching a mean prevalence of shedders of 5% and a mean 

environmental load of 0.05 respectively 2 and 1.5 years sooner than scenario 3. At the end of 

the vaccination period, the mean prevalence of shedders and environmental bacterial load are 

respectively equal to 2.8% and 0.04 units in scenario 1 and 5.0% and 0.06 units in scenario 3. 

The mean number of abortions in the first year of the vaccination program is equal to 2.5 and 

3.6 in scenarios 1 and 3 respectively. In scenario 2, there is an increase in the mean prevalence 

of shedders, the yearly number of abortions and the environmental bacterial load, after the 

vaccination is ceased. For scenario 2A, this increase occurs immediately after the loss of 

immunity, whereas for scenario 2B (lifelong immunity), the increase is almost zero in the first 

year without vaccination and more progressive afterwards. Thus, the mean prevalence of the 

shedders is around 14% for both scenarios 2A and 2B three years after the simulation start 

and increases to respectively 45.4% and 32.0% eight years after the simulation start.  
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Figure 4.3. Temporal dynamics of the mean prevalence of shedders (a), the mean environmental 

bacterial load (b) and the mean number of abortions (c) with respect to the vaccination scenarios. 

Scenario 1: vaccination of heifers and cows for a 10-year period (black line); scenario 2: vaccination 
of heifers and cows for a 3-year period with (scenario 2A – grey line) or without (scenario 2B –grey 

dotted line) loss of immunity one year after at the last vaccination; scenario 3: vaccination of 
heifers for a 10-year period (black dotted line); control: no vaccination (black thick line). Temporal 

dynamics of the mean prevalence of shedders (d) and mean environmental bacterial load (e) in 
scenario 1 with different values of pv (transition rate from SVe to I1Ve). 
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The mean number of yearly abortions increases from 0.9 the third year after the start of 

vaccination to 4.2 and 3.7 abortions per herd respectively during the eighth year after 

vaccination starts. 

c. Influence of the pv values on the model dynamics 

As shown in Figure 4.3.d and 4.3.e for the scenario 1, the mean prevalence of shedders is highly 

influenced by the values of pv, whereas the mean yearly number of abortions (results not 

shown) and the mean dynamics of environmental bacterial load are not affected by this 

parameter. For pv = 0.9p, the mean prevalence of shedders is almost stable within the first 

three years of vaccination and decreases afterwards to reach 9.3% at the end of the 

simulation time. On the contrary, when considering pv = 0.05p, the decrease is much faster and 

the mean prevalence of shedders is less than 1% at the end of the simulation time.  

d. Influence of the vaccination scenarios and of the pv values on 

the extinction rate 

Whereas the extinction rate is nil when no control programme is implemented, it varies from 

4% to 42% between the vaccination scenarios and the values of pv (Table 4.1). It appears that 

most of the extinctions occur late: as shown on Figure 4.4 for the scenario 1, only one third of 

the extinctions happen in the six first years of the vaccination programme.  

 

Table 4.1. Extinction rate and mean time to extinction for each of the vaccination scenarios.  
Control: no control programme; scenario 1: vaccination of heifers and cows for a 10-year period; 

scenario 2: vaccination of heifers and cows for a 3-year period with (scenario 2A) or without 
(scenario 2B) loss of immunity one year after at the last vaccination; scenario 3: vaccination of 

heifers for a 10-year period. 

Scenario 

1 1 1 Criteria 
Control 

pv = 0.05p pv = 0.21p pv = 0.9p 
2A 2B 3 

Extinction rate 0.00 0.48 0.42 0.18 0.04 0.13 0.20 

Mean time  
to extinction 

- week 349 week 361 week 275 week 84 week 216 week 411 

 

The extinction rates for scenario 1 and pv = 0.21p are presented in Figure 4.5 according to the 

three classes of initial shedders prevalence and milk shedders prevalence. There is no 

significant difference between them (χ2 tests, p>0.05). However, the extinction rates tend to 

be lower when the initial prevalences of shedders are high.  
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Figure 4.4. Proportion of extinctions (amongst the 42 extinct trajectories of scenario 1) according 
to the year after the start of vaccination when they occur. 

 

 

Figure 4.5. Extinction rate, for scenario 1 and pv = 0.21p, stratified in 3 classes according to the 
initial prevalence of shedders (black bars) or milk shedders (grey bars) at the start of vaccination. 

Amongst the 100 runs, the 1st class comprises the trajectories with the 20% lowest initial 
prevalences and the 3rd class those with the 20% highest initial prevalences. The 2nd class includes 

the other repetitions.  
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5. Discussion 

In this study, we modelled the long term effectiveness of three different vaccination 

strategies in an infected dairy cattle herd [(1) vaccination of the whole herd for 10 years, (2) 

vaccination of the whole herd for 3 years and (3) vaccination of the heifers only for 10 years] 

and showed that scenario 1 was the most effective control strategy. In fact, the three 

vaccination strategies all reduced the prevalence of shedders, the environmental bacterial load 

and the number of abortions. However, their effectivenesses are not equivalent. As the 

infection is most often not eradicated in the first years of vaccination, an early cessation of 

vaccination (scenario 2) will be ineffective in the long run. Its short-term effect on the 

infection dynamics depends on the lifetime of immunity for efficiently vaccinated cows. 

According to Rodolakis et al. [133], in infected herds, more than 80% of the vaccinated cows 

still had immune markers one year after vaccination. However, at the same time, less than 60% 

of the vaccinated heifers were still skin-test positive. In the field, this means that immunity 

should last between one year (scenario 2A) and life long (scenario 2B). In that context, the 

increase of the prevalence of shedders, the environmental bacterial load and the number of 

abortions should not be observable in the first months following the cessation of vaccination. 

Nevertheless, the infection is spreading again. Thus, before stopping a vaccination programme 

on a farm, it seems essential to determine the presence or absence of C. burnetii in the herd. 

Diagnostic tests at a herd level (e.g. PCR in bulk tank milk) can probably be helpful [58], 

although they are imperfect.  

According to our simulations, when only the heifers are vaccinated yearly (scenario 3), the 

decrease in the prevalence of shedders, the environmental bacterial load and the number of 

abortions is much slower than when all the animals are vaccinated (scenario 1): it takes 2 to 2.5 

additional years to reach the same level of prevalence of shedders and 1.5 to 2 additional years 

to reach the same level of environmental load, although the two strategies only differ in the 

initial action of the control programme. Thus, from an epidemiological point of view, scenario 3, 

seems not the best strategy. In contrast, over the 10-year vaccination period of scenario 1, the 

mean prevalence of shedders and environmental bacterial load are decreased by 10 and 7 

respectively. Although after 10 years of vaccination, the C. burnetii infection is still present in 

58% of case herds, the vaccination of both heifers and cows from the start of the programme 

and for many years is in our study the most effective strategy. It has to be highlighted that 

the results of our study depend on the model structure and parameters values. The model 

represented the heterogeneity of shedding which is known to affect infection dynamics and 

hence the interventions efficacies in many diseases [104]. Indeed, model parameters governing 
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the shedding levels strongly influenced the C. burnetii dynamics (see Courcoul et al.14). 

Moreover, parameter values were inferred or calibrated from field data of naturally infected 

dairy cattle herds [35]. Thus, we took into account the latest knowledge on C. burnetii 

infections. 

The probability of infection for an efficiently vaccinated susceptible cow pv was quantified 

based on Guatteo et al. [61]. As the confidence interval of this parameter was wide, we studied 

the influence of this parameter value on the model outputs. Although the mean shedder 

prevalence was highly influenced by the value of pv, the mean environmental bacterial load 

(which indirectly represents the infection risk for both animals and humans) decreased by 

roughly the same rate regardless of the parameter value. This is likely because the efficiently 

vaccinated animals shed in decreased quantities. Therefore, irrespective of whether the mean 

prevalence of vaccinated shedders remains high, the prevalence of high shedders was reduced, 

with a major impact on the environmental load. This result has also been described by Lu et al. 

[92] who showed that, to reduce the Salmonella prevalence in the long term, highly effective 

vaccines lowering the infectiousness would be a better choice than highly effective vaccines 

reducing susceptibility. Interestingly, whereas the environmental bacterial load was hardly 

sensitive to pv (infection probability for efficiently vaccinated cows), the extinction rate was. 

Therefore, if the vaccine is to be used for eradication of C. burnetii from infected farms, both 

susceptibility and infectiousness have to be determined more accurately for the model to be 

used for prediction purposes or decision support. According to Rousset et al. [136], the lowest 

shedding level in vaginal swabs was shown to be more frequent in vaccinated than non 

vaccinated goats. However, further studies are needed to determine if a decrease of 

infectiousness is observed for all the vaccinated animals or only for the efficiently vaccinated 

ones and to quantify this decrease in all the shedding routes. 

It should be noted that the extinction rate is highly influenced by the effect of vaccination on 

the susceptibility, the level of shedding and the mortality rate of the bacterium in the 

environment3, which are all uncertain variables in our model. This extinction rate should then be 

interpreted with caution and used to compare different control strategies within the model. 

However, the behavior of the extinction rate suggests that it may be difficult and takes time 

to get free from C. burnetii within a herd. 

                                                 
14 Courcoul A., Monod H., Nielen M., Klinkenberg D., Hogerwerf L., Beaudeau F., Vergu E., Modelling of 

the heterogeneity of shedding in the within herd Coxiella burnetii spread and identification of 
related key parameters through a sensitivity analysis, submitted for publication in Journal of 

Theoretical Biology. 
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In conclusion, our modeling approach showed that a long term yearly vaccination will reduce 

infection risk in vaccinated herds, but an additional cost-benefit analysis considering the 

economic aspects of control programmes is needed to design an optimal control strategy.  
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Table 4.2. Description of the model parameters for the herd demography and their values used for 

simulations. 
 

 

Parameters Standard value 

Replacement rate (year-1) 0.355 

   

lactation 1 0.0057 

lactation 2 0.0052 

lactation 3 0.0065 

lactation 4 0.0067 
Culling rate (week-1) 

lactations 
5&6 

0.0161 

   

lactation 1 0.337 

lactation 2 0.252 

lactation 3 0.173 

lactation 4 0.11 

lactation 5 0.088 

Probability distribution of the 

lactation numbers of the cows at 

the start of simulation 

lactation 6 0.04 

   

Calving-calving interval (weeks) 55 

   

Dry period (weeks) 8 

   

Non gestation period (weeks) 15 
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Table 4.3. Definitions of the epidemiological model parameters and their values 

used for simulations. 
 

Parameter Definition Value 

m (week-1) Transition rate I1 => S and I1Ve => SVe 0.7 a 

q (week-1) 
Transition rate I1 => (I2 or I3) and I1Ve => (I2Ve 

or I3Ve) 
0.02 a 

plp  
Proportion of cows going from I1 to (I2 or I3) 

and becoming I3 and going from I1Ve to (I2Ve or 
I3Ve) and becoming I3Ve 

0.5 

r1 (week-1) Transition rate I2 => C1 and I2Ve => C1Ve 0.2 a 

r2 (week-1)  Transition rate I3 => C1 and I3Ve => C1Ve 0.02 

s (week-1) Transition rate C1 => I2 and C1Ve => I2Ve 0.15 a 

τ (week-1) Transition rate C1 => C2 and C1Ve => C2Ve 0.0096 

µ (week-1) Mortality rate of C. burnetii 0.2 a 

probav 
Probability of abortion after a transition S => 

I1, C1 => I2 and C2 => I2  
0.02 

ρmf  
Proportion of bacteria shed through 
mucus/faeces filling the environment 

compartment 

0.2 

ratio ρmilk/ ρmf 
ρmilk = proportion of bacteria shed through milk 

filling the environment compartment 
0.125 

milk 0.31b 

mucus/feces 0.62b α 

milk+mucus/feces 

Probability distribution of the shedding routes 

for the I1 cows 

0.07b 

milk 0.61b 

mucus/feces 0.33b β 

milk+mucus/feces 

Probability distribution of the shedding routes 

for the I2 cows after 4 weeks post-calving 

0.06b 

milk 0.14b 

mucus/feces 0.5b β calv 

milk+mucus/feces 

Probability distribution of the shedding routes 
for the I2 cows in the 4 first weeks post-

calving 
0.36b 

milk 0.83b 
γ 

milk+mucus/feces 

Probability distribution of the shedding routes 

for the I3 cows after 4 weeks post-calving 
0.17b 

milk 
0.25b 

γ calv 
milk+mucus/feces 

Probability distribution of the shedding routes 
for the I3 cows in the 4 first weeks post-

calving 
0.75b 

low level 0.85b 

mid level 0.15b Q1 

high level 

Probability distribution of the shedding levels 

for all the I1 and for the I2 shedding in 
mucus/faeces after 4 weeks post-calving 

0b 
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low level 0.4b 

mid level 0.5b Q2 

high level 

Probability distribution of the shedding levels 
for the I2 shedding in milk after 4 weeks post-

calving 
0.1b 

low level 0.25b 

mid level 0.25b Q3 

high level 

Probability distribution of the shedding levels 

for all the I2 in the 4 first weeks post-calving 

0.5b 

low level 0.6b 

mid level 0.4b Q4 

high level 

Probability distribution of the shedding levels 
for the I3 shedding in mucus/faeces after 4 

weeks post-calving 
0b 

low level 0.15b 

mid level 0.6b Q5 

high level 

Probability distribution of the shedding levels 

for all the I3 shedding in milk and for the I3 
shedding in mucus/faeces in the 4 first weeks 

post-calving 
0.25b 

low level 1/3000 

mid level 1/30 
Qty (units of 
environment) 

high level 

Quantity of bacteria released by shedders in 
low, mid and high levels respectively 

1 

low level 1 

mid level 0 Q1Ve 

high level 

Probability distribution of the shedding levels 
for all the I1Ve and for the I2Ve shedding in 

mucus/faeces after 4 weeks post-calving 
0 

low level 0.9 

mid level 0.1 Q2Ve 

high level 

Probability distribution of the shedding levels 

for the I2Ve shedding in milk after 4 weeks 
post-calving 

0 

low level 0.5 

mid level 0.5 Q3Ve 

high level 

Probability distribution of the shedding levels 
for the I2Ve in the 4 first weeks post-calving 

0 

low level 1 

mid level 0 Q4Ve 

high level 

Probability distribution of the shedding levels 

for all the I3Ve shedding in mucus/faeces 
after 4 weeks post-calving 

0 

low level 0.75 

mid level 0.25 Q5Ve 

high level 

Probability distribution of the shedding levels 
for all the  I3Ve shedding in milk and for the 

I3Ve shedding in mucus/faeces in the 4 first 
weeks post-calving 0 

standard value 0.21c 

0.05 c ratio pv/p bounds of the 95% 

CI tested for 
scenario 1 

Ratio between the transition rate SVe => I1Ve 
and the transition rate S=>I1 

0.9 c 

afrom Courcoul et al. Proc Biol Sci. (2010)  

bcalibrated to match field data (R. Guatteo 2009, personal communication)  

cfrom Guatteo et al. Vaccine (2008)  
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The aim of this thesis was to develop a model representing the spread of C. burnetii within a 

dairy herd in order to better understand the course of infection in cattle and to enlighten 

decision makers on the effectiveness of control measures, since this bacterium poses a problem 

for both human and animal health. This work was done in keeping with the EFSA 

recommendations which recently highlighted the need to objectively assess relevant 

epidemiological parameters and the effectiveness of control options for C. burnetii infection in 

domestic ruminants populations [39]. We focused on the within-herd C. burnetii spread. 

Although this scale may seem inappropriate for the study of the bacterial spillover from animal 

populations to humans, it is crucial to rigorously explore dynamics at finer scales before 

focusing on the whole dynamical process. More precisely, before representing the infection 

spread at a regional scale, understanding the within-herd infection dynamics is critical. The 

speed and trends of the within-herd infection spread, the heterogeneity related aspects 

between animals and/or farms are examples of key points that have to be checked before 

developing an inter-herds or an animal-human model of C. burnetii transmission.  

Although Q fever is a European burning issue (mainly because of the current Dutch epidemic), 

the model we developed was to our knowledge the first epidemic model dealing with C. burnetii 

spread. Our study involved three main steps:  

1. First, the model was conceptualised and the inference was performed based on field data 

in a Bayesian framework. The inference process was not only a prerequisite of the future 

use of the model, but it also allowed to quantify parameters having a biological meaning 

(e.g. probability of infection in a chronically infected herd, duration of shedding and non 

shedding periods, etc…) and then to better understand the natural course of the infection 

in a dairy cattle herd.  

2. Then, after the model was made more complex and realistic by including variability within 

and between animals in the shedding duration, routes, and intensity, the factors most 

influencing the infection dynamics were determined through a sensitivity analysis. This 

step was necessary for linking the model uncertainty to some of the epidemic parameters: 

this allowed the model improvement by highlighting the need of an accurate quantification 

of uncertain but influential parameters. Moreover, the identification of influential 

mechanisms was part of the understanding of the infection process. It also plays a role in 

the definition of effective control strategies, by directing interventions towards the most 

vulnerable facets of the disease transmission. 

3. At last, we tested by simulation the long term effectiveness of three different vaccination 

strategies in reducing the shedders prevalence, number of abortions, environmental 
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bacterial load, and in leading to extinction of infection. By taking into account the available 

knowledge on the vaccine effect, we thus determined the impact of vaccination according 

to the duration of the vaccination programme and the composition of the vaccinated 

population.  

In section 1 of the general discussion the major findings of this thesis will be summarized. 

Then, section 2 will discuss the advantages and limits of the modelling approach which has been 

used, and section 3 the available and required data for model conceptualization, calibration and 

validation. Lastly, in section 4 a few implications and perspectives of this thesis work will be 

provided. 

 

I- Major findings 

The preliminary main achievement of this thesis was the elaboration of the first model in the 

literature for the study of C. burnetii spread within a dairy cattle herd and the effectiveness 

of different measures to control it.  

First, the model constituted the basis for the exploration of heterogeneity related aspects. As 

highlighted by the available data, Q fever is characterised by a large heterogeneity both 

between herds and between animals. It was already observed that some infected herds were 

asymptomatic while others exhibited many abortions. Here, we showed that even for apparently 

similar herds (i.e. chronically infected herds without any obvious clinical sign attributable to Q 

fever), the infection dynamics was variable: intermittency of shedding was rare to usual 

according to the herd; few herds were characterized by a low probability of infection and then 

a slow bacterial spread, while others had a quite high probability of infection and then a faster 

infection dynamics. This heterogeneity in probability of infection was linked to the 

environmental bacterial load, which was variable between herds. In addition, within a herd, a 

high variability in the shedding routes, duration and levels of shedder cows was suggested by 

our data and also discussed in the literature. This heterogeneity of shedding was a key 

mechanism in the infection process: the most influential parameters were shown to be the 

probabilities governing the levels of shedding, especially for mucus/faeces shedders. Besides, 

seronegative infectious animals (I-) and seropositive ones (I+) were shown to have different 

patterns of shedding. I- shed on average for a shorter period of time than I+, more often in 

mucus only and almost exclusively at low titres. I+ shed preferentially in milk only and quite 

often at moderate or high titres. The transition from one type of shedder to the other one was 
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rare (i.e. in chronically infected herds, the transition probability from I- to I+ was shown to be 

very low). Due to this low estimated transition probability and to the high estimated transition 

probability from I- to susceptible animals (S), the simulated number of I- was higher than the 

number of I+, especially in the first years of infection. This could partly explain why the 

distribution of the levels of bacteria shed in mucus/faeces by the I- had a stronger impact on 

the model outputs than the one shed in mucus/faeces by the I+. 

The parameters impacting the most the infection dynamics were also identified. Some 

physiological parameters related to the intermittency of shedding (i.e. transition probability 

from seropositive non-shedders to seropositive shedders) or to the transition from one type of 

shedder to another one (i.e. transition probability from seronegative shedders to seropositive 

ones) played a non-negligible role. However, the most influential parameters were associated to 

the probabilities governing the levels of shedding, especially for mucus/faeces shedders, as 

already mentioned above, and to the characteristics of the bacterium in the environment (i.e. 

proportion of bacteria shed through mucus/faeces reaching the environment and mortality rate 

of C. burnetii). Interventions impacting those key parameters would be of great interest. 

Therefore, control measures leading to (i) a decrease in the quantities of bacteria shed, 

especially in vaginal mucus and/or faeces, (ii) a decrease in the probability of shedding again for 

an infected non-shedder animal or to (iii) a decrease in the life expectancy of C. burnetii, could 

be a priori effective control strategies. As vaccination and environmental measures (e.g. 

increased cleaning and disinfection) are susceptible to respectively decrease the quantities of 

bacteria shed and the life expectancy of the bacterium, they could be promising interventions.   

The relative effectiveness of three vaccination strategies was determined in infected dairy 

herds subject to at least three abortions in the previous year. Vaccinating cows and heifers for 

three years only was ineffective in the long run. The probability of extinction of the infection 

was low using this scheme. Thus, although the prevalence of shedders, the environmental 

bacterial load, and the number of abortions decreased during the vaccination programme, they 

increased again after the campaign was ceased. In contrast, a 10-year vaccination period for 

both cows and heifers allowed to considerably decrease the mean prevalence of shedders, 

environmental bacterial load, and number of abortions and even to eradicate the infection in a 

non-negligible number of cases. However, when only heifers (instead of cows and heifers) were 

vaccinated at the beginning of this 10-year vaccination programme, the decrease was much 

slower and it took about two additional years to reach the same level of shedders prevalence or 

environmental load.  
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II- Comments on the modelling approach, inference and 

model analysis 

1. Choice of the mathematical formalism 

To represent the spread of C. burnetii within a dairy cattle herd, we developed a stochastic 

individual-based model in discrete time with a time step of one week. As the mean size of the 

host population was low (around 50 cows), it was appropriate to consider a stochastic approach. 

For each individual, all the transitions between health states as well as the determination of 

the shedding routes and quantities of bacteria shed in the environment were supposed 

stochastic. The individual-based scale was preferred in order to allow the estimation of 

parameters of transitions between health states in the presence of bidirectional transitions. 

Moreover, this representation enabled to consider the lactation and gestation cycle of cows, 

which interfered with the epidemic process. As an example, the probability distributions of the 

levels of shedding were variable with respect to the moment of calving. Therefore, an 

individual-based model was an easy way to take into account interactions between demography 

and epidemiology by recording the individual life history of each cow. A one-week time step was 

chosen since no transition was assumed to occur in less than seven days. However, this choice 

was driven by the data set configuration (in data set A, samplings are performed every week) 

and it could be interesting to check this assumption by sampling cows, especially intermittent 

shedders, every two or three days.  

 

2. Choice of the model structure  

The complete model we developed (i.e. the variant including heterogeneity related aspects) had 

a SIR-like structure with three different kinds of I (I-, I+ and persmilkI + ). This model was 

characterised by transitions in both directions between S and I- and between I+ and R (R 

health state was called C+ in the model including the heterogeneity of shedding and C1 in the 

model including vaccination). Several issues were encountered. First, the S state comprised real 

susceptible animals but also apparently susceptible animals: seronegative non-shedders which 

were already infected became I- and went back to S. Although they were seronegative, the 

latter could have developed a cell-mediated immunity response to C. burnetii which means that 

they were not naïve to the infection anymore. The transition probability from S to I- is then a 

mix between an infection probability and a re-infection probability. However, using the current 



Chapter 5 : General discussion 

 139 

diagnostic tests it was not possible to differentiate primary infected from re-infected animals. 

Cell-mediated immunity tests (i.e. skin tests) are under development and would have been of 

great interest to make this distinction.  

We represented in the model two types of infectious animals, I- and I+ (considering I+ and I + 

milk pers all together) with two different shedding patterns. However, individual factors such as 

age, genetics, immunity, or other management factors that might predispose a cow to fall into 

one of these two categories are still unknown. When developing our model, we considered the 

importance of the humoral immunity response, which was assumed to be the main differential 

factor leading to the distinction between I- and I+. An additional difference between these 

two infectious states was that when in the first one, an animal had the possibility to clear the 

infection, while when in the second he stayed infected and alternated shedding and non 

shedding episodes. When representing C. burnetii spread in vaccinated herds, we had to define 

in the model the type(s) of I for vaccinated and therefore seropositive animals. Two modeling 

options were considered: (i) to still assume that the humoral immunity response was the 

differential factor between the two types of I: hence, all vaccinated animals have the I+ 

shedding pattern, or (ii) to assume that the humoral immunity response was not the only factor 

enabling the distinction between the two types of I: two different shedding patterns could 

exist in vaccinated animals too15. In order to choose the “best” option, we looked for field data 

on shedding routes distributions in vaccinated cows. In Guatteo et al [61], the shedding route 

distribution of 18 cows, susceptible when vaccinated and monitored for the following one-year 

period, was not significantly different from the one of I- or from the one of I+ in non-

vaccinated herds. Thus, it was impossible to determine if the type of shedder could be 

determined according to the humoral response, the time from infection or another factor. 

Between the two modeling options, we finally chose the second one: although all vaccinated 

animals were assumed seropositive, two types of I were assumed to exist for vaccinated 

animals and represented in the model (i.e. I1 and I2/3). Further studies are highly needed to 

define (i) individual factors that determine the shedding pattern and then the type of shedder 

(cell-mediated immunity tests could be useful for this part) and (ii) the impact of vaccination on 

the shedding patterns.  

Another option would be to define different types of shedders regardless of the presence or 

absence of antibodies. We could also assume that infected individuals which succeed in clearing 

the infection become resistant and do not get infected again. A new conceptual model could be 

                                                 
15we assumed in this case that one type of I, I1 has a shedding pattern similar to I-, and that the 
other one, I2, is similar to I+. 
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proposed (Figure 5.1): this new version would have the advantage of distinguishing real 

susceptible (S) from apparently susceptible (R) individuals. It would also match the opinion of 

some experts who consider that humoral immunity response is not a key point of the infection 

process. However, according to the data set A, we had no other choice when making inference 

than gathering real and apparently susceptible individuals into a unique category and defining 

classes of shedders based on their serological status.  

 

Figure 5.1. Flow diagram representing a possible description of the spread of C. burnetii within a 

cattle herd. The health states are: S, the real susceptible individuals, 1I , the shedder cows which 

are able to clear the infection, R, the resistant animals, 2I , the chronically infected cows which 

are shedding, and C, the chronically infected cows which are not shedding.  

 

As a last element of the model structure, the route of C. burnetii transmission represented in 

the model was the inhalation of bacteria from the environment. Based on current knowledge, 

this infection route is the main one. However, if in the future, ticks, wildlife, or other 

transmission pathways are shown to have a non-negligible role in the infection dynamics, the 

model structure will need to be adapted.  

3. Estimation of main epidemiological parameters  

We used a Bayesian framework to estimate from field data the probabilities of transitions 

between health states as well as the parameters linked to the shedding and survival of C. 

burnetii in the environment. This approach gave us the possibility (i) to deal with missing data, 

(ii) to account for both previous knowledge about C. burnetii (mainly concerning the life 

expectancy of the bacteria in the environment and the proportions of different health states 

within an infected herd), and (iii) to take into account between-herd heterogeneity by 

considering some transition parameters as herd dependent. The results of the estimation work 

were satisfactory: for the large majority of parameters, a good convergence of the Monte 
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Carlo Markov chains was achieved, the posterior distributions obtained were biologically 

plausible, and the model was able to properly reproduce the observed data.  

It would have been possible to take into account the uncertainty of observations in a different 

way. In the Bayesian network we developed, the observed health state of cow i at time t, )(i
tO , 

is a random qualitative nominal variable which can take the values S, I-, I+ or R, according to 

the real health state of this cow at the same time, )(i
tR , and probabilities given by the 

sensitivities and specificities of the diagnostic tests. More technically, this can be viewed as a 

hidden Markov model, where the modelled system is assumed to be Markovian with hidden 

(unobserved) states, here variables )(i
tR . However, as discussed in section III.6 of chapter 2, a 

possible way to more accurately account for the uncertainty of the observed health states is to 

consider that this uncertainty would differ for each observation as a function of the 

quantitative results provided by the diagnostic tests (Optical Densities for the ELISA and Ct 

values for the PCR). Indeed, this would potentially increase the accuracy since probabilities 

linking the hidden and observed layers would no more depend on sensitivities and specificities, 

which are already averaged values over the whole population, but rather directly on individual 

information. We could assume that the uncertainty on an observation is greater when the 

quantitative test result is close to the positivity threshold than when it is far away. To 

investigate this avenue, probability distributions of OD and Ct conditionally to the real health 

state of individuals were modelled (Figure 5.2) and parameterized according to the ranges of 

observed OD and Ct values and to the sensitivities and specificities of the diagnostic tests. As 

an example, to determine the probability that a cow has a given value of OD knowing that it has 

antibodies (green line of Figure 5.2.a), we first determined the range of observed OD values [-

70 to 630]. The ELISA had an assumed sensitivity of 85% and the positivity threshold was 40. 

We assumed that the mode for the OD value for animals with antibodies is 190. The probability 

distribution had therefore to fulfil two conditions: its mode had to be 190 and the area under 

the curve for OD values above 40 had to represent 85% of the total area under the curve. In 

this way, we determined the probability distribution parameters. During our thesis work, we did 

not have enough time to further investigate this way of taking into account the uncertainty on 

observations but it could represent an interesting extension.  
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Figure 5.2 - a. Probability that a cow has a given value of Optical Density knowing that (i) it does not 
have any antibodies (red line), (ii) it has antibodies (green line); 

- b. Probability that a cow has a given value of Cycle threshold knowing that (i) it is not a shedder 
(red line), (ii) it is a shedder (green line) 

 

We could also wonder if all the epidemiological parameters of the complete model (i.e. model 

including the shedding routes and levels developed in chapter 3) could have been estimated 

from data set A in this Bayesian framework. In this case, more parameters would have to be 

estimated and it is not sure that the convergence of the MCMC would be achieved, although 

information about shedding routes and levels from data set A could be used. A compromise 

would be perhaps to perform a sensitivity analysis on the complete model first, to fix its non-

influential parameters at their most plausible values (from the literature or based on expert 

opinion), and then to only estimate model parameters influencing the infection dynamics.  

4. Sensitivity analysis  

To identify the parameters that mostly contributed to the model output variability, we 

performed a sensitivity analysis considering 19 epidemiological parameters of the complete 

model. We defined four levels per factor directly related to the heterogeneity of shedding and 

two levels per other factors, and used fractional or complete fractional designs. As our model 

was stochastic, we studied the variability of the mean and standard deviation of 30 model 

repetitions for seven outputs of interest. This allowed to differentiate the variability due to 

the inherent model stochasticity from the variability due to the variability in input factors, and 

to focus only on the latter. Besides, the seven outputs of interest were dynamical and recorded 

every week for a period of five years. Therefore, we first performed a PCA to summarize the 

behaviour of the outputs over the whole simulated period and then an ANOVA to compute 
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sensitivity indices. This approach developed by Lamboni et al. [84] was preferred to Sobol’s 

method and FAST which are also variance-based methods allowing the calculation of sensitivity 

indices. In these methods, the range of variation of each factor has to be defined by a 

continuous probability distribution. In our study, as some factors were not scalars but 

probability distributions, it seemed difficult to describe their range of variation in a continuous 

way. Besides, for Sobol’s method and FAST, model outputs have to be punctual and not 

dynamical. Thus, the PCA followed by ANOVA method we used seemed better suited to our 

needs.  

5. Simulation of control strategies 

In our work, we tested the relative effectiveness of three vaccination strategies in herds 

characterized by at least three abortions in the last year. The modelling approach had the 

major advantage that every parameter of the infection could be monitored over time. As an 

example, the environmental bacterial load was recorded weekly during the control programme, 

whereas this factor is not easily available in field studies. In addition, the model developed in 

this thesis work is a flexible tool that can be easily adapted to explore other research 

questions related to C. burnetii spread and control. It would be possible to test additional 

control strategies (e.g. environmental measures, specific culling, etc…) as well as the same 

interventions but for different initial conditions (e.g. vaccination in non infected herds, in 

herds after the 1st abortion attributable to Q fever occurred, etc…). 

 

III- Available and required data for model 

conceptualization, inference and validation 

A key aspect of our modelling work was the model elaboration and the estimation of its 

parameters from field data. Data set A was of great value as 235 cows from five chronically 

infected herds were sampled from one to five times over a one-month period. At each sampling 

time, the serological status of the cow was determined as well as its shedding pattern (i.e. 

shedding routes and levels) if the cow was shedding. This information allowed us to estimate 

the parameters of transition between health states and to calibrate the representation of the 

heterogeneity of shedding when incorporating the shedding routes and levels in the model. 

However, this data came from infected herds without any obvious clinical sign attributable to 

Q fever and was used to also describe the infection spread in herds assumed to experience 

abortions due to Q fever. It would therefore be useful to collect data from herds exhibiting 
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clinical signs in order to check whether their disease dynamics would be quite similar to the one 

of herds without any visible sign.  

Concerning the initial point of the infection, no data was available. It is likely that the 

parameters of transitions between health states at the very beginning of the pathogen spread 

differ from those of infected herds where the bacterium has been present for a long time. As 

an example, in this latter type of herds (i.e. chronically infected herds), the estimated value of 

the transition probability from I- to I+ was almost nil, whereas they were many I+ cows. Hence, 

we could imagine that, in the early stages of infection, some cows get infected, become I- and 

then I+, during a relatively short time span. The probability of transition from I- to I+ would 

therefore be probably higher in recently infected herds compared to chronically infected 

herds, where almost no transitions between these two states are observed. In the field, 

detection of the infection occurs late, because it is based on the occurrence of clinical signs. 

Experimental studies are therefore the only way to monitor early stages of C. burnetii 

infections. Such studies are logistically complex and costly as C. burnetii has to be handled in 

P3 laboratories. However, if conceived, they would allow determining the speed of the infection 

spread at the beginning of the process and also to clarify the model parameterization. Specific 

factors that could influence the individual response to C. burnetii and pattern of infection could 

also be studied. As an example, the gestation status is an influential factor: pregnant goats 

experimentally challenged with C. burnetii are often seronegative and do not shed until they 

abort or kid (H.J. Roest, personal communication). This kind of mechanism has not been 

included in the model yet and further studies would therefore be highly needed to specify the 

first stages of infection.  

As previously mentioned, there would be a need of data about cell-mediated immunity: this 

could help distinguishing the real from the apparently susceptible animals and the different 

types of I individuals, and thus to update the model structure. This type of immunity was 

indeed reported to play a role in the clinical expression of C. burnetii infection [73]. Moreover, 

skin tests were recently used to determine the interest of an annual booster in vaccinated 

cattle by assessing the level of different immune markers [133]. However, to our knowledge, no 

study has investigated yet the possible link between cell-mediated immunity and shedding 

pattern.  

Another beneficial area of research would be the quantification of viable Coxiella in the 

environment. It could help quantifying more accurately the model parameters directly related 

to the environmental bacterial load (proportion of bacteria shed through mucus/faeces 

reaching the environment and mortality rate of C. burnetii) and to check that the mathematical 
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expression giving the probability of infection with respect to the environmental bacterial load 

is appropriate. As previously explained (see section IV.1. of the introduction), current methods 

monitoring the environmental bacterial load do not allow easily quantifying the risk of infection. 

PCR on dust samples can be performed, but it is difficult to correlate the result of this test 

with the environmental load of bacteria actually contributing to the infection. Indeed, 

pathogens can be trapped in dust depositions, which decreases their availability and hence the 

probability of airborne infection of cattle. Therefore, both the pathogen viability and the 

probability of inhalation of the contaminated dust should be determined. A promising technique 

is the PCR on air samples. The probability that C. burnetii could be inhaled has not to be 

quantified as bacteria are already in suspension in the air. A protocol of air sampling in infected 

dairy goat farms is currently led at the University of Utrecht (the Netherlands) jointly by the 

Faculty of Veterinary Medicine and the Institute for Risk Assessment Sciences.  

This work also highlighted a lack of knowledge on the effect of control strategies. Regarding 

the vaccination, the relative risk of infection for animals vaccinated when susceptible and non-

pregnant was quantified [61]. Although its confidence interval was wide (i.e. 95%CI of 0.05-

0.90), this estimation guided the choice of numerical values for one of our model parameters. 

However, the consequences of vaccination on shedding routes and levels have not been 

evaluated yet. Also, no information is currently available on the consequences of environmental 

measures on the viability of C. burnetii in the farm. These knowledge gaps would need to be 

filled in before optimal control strategies could be defined. 

Model validation is a key step before using model predictions to guide public health decision 

makers. Sensitivity analysis, model assumptions relevancy, and checking of the concordance 

between model conclusions and expert opinions are part of the process. The main step consists 

in confronting model outputs to independent data sets [163]. In our case, it was impossible to 

perform this confrontation, especially for the environmental bacterial load since no additional 

data was available. Nevertheless, we ran 100 repetitions of the complete model (i.e. including 

shedding routes and levels) for a period of 5 years and compared the mean simulated 

seroprevalence and prevalence of shedders for the last point of the time series with published 

data. The concordance was satisfactory: the simulated seroprevalence was equal to 35% on 

average (23.3% and 47.8% for the 25th and 75th percentiles) compared to 40% on average (25% 

and 51% for the 25th and 75th percentiles) in 56 naturally infected French herds with abortions 

due to Q fever [149]. The mean simulated prevalence of shedders was 35.5% (0 and 61.7% for 

the percentiles 2.5th and 97.5th) whereas in the field, the prevalence of shedders was 45.5% 

for 242 cows from 31 naturally infected French herds with abortions due to Q fever [57] and 
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38.9% in the 95 cows from three French asymptomatic dairy herds [131]. However, this data is 

neither repeated over time, nor does it allow following the infection spread. It would have been 

possible to split the data set A into two subsets (e.g. data from three herds on the one hand 

and from the two other herds on the other hand). One subset would have been used to estimate 

model parameters and the other to validate the model. Though, due to missing data, information 

available in data set A was limited. Besides, as some estimated parameters were assumed to be 

herd-dependent, the whole data set A had to be used for parameter estimation.  

Currently, an 18-month follow-up of 100 naturally infected dairy cattle herds with abortions is 

led in the west of France by the unit of Oniris-INRA “Bioaggression, Epidemiology and Risk 

Analysis in Animal Health” (Nantes, France). The aim of this study is to assess the impact of 

control strategies combining vaccination and/or antibiotherapy in field conditions. Criteria of 

effectiveness include results of real-time PCR in bulk tank milk performed every three months. 

One of four potential control strategies is implemented in each herd: (i) vaccination of heifers 

only, (ii) vaccination of heifers and cows, (iii) antibiotherapy before calving and drying up, (iv) 

vaccination of heifers and cows as well as antibiotherapy before calving and drying up. 

Interventions (i) and (ii) correspond to two vaccination strategies that we simulated with our 

model. It would then be possible to confront model outputs to these field data. Nevertheless, 

as the correlation between the titre in bacteria in bulk milk samples and the prevalence of milk 

shedders remains weak [58], the comparison between observed and simulated results seems 

difficult.  

IV- Implications and perspectives 

The work that was carried out during my PhD has two types of immediate consequences. Firstly, 

it highlights and helps to prioritize needs of research. As previously discussed, further studies 

aiming at assessing the environmental load of viable bacteria, at describing the first stages of 

the infection process, at determining the possible role of cell-mediated immunity in the 

evolution of individual health states, and at quantifying the vaccine effect on the shedding 

pattern would be of great value. Besides, identifying individual or environmental factors that 

lead to super-shedding events, especially in vaginal mucus or faeces, would be a key milestone in 

the understanding and control of the infection spread. Secondly, our work can guide farmers 

and decision makers in the choice and design of control programmes for Q fever in cattle. 

Vaccination is an effective way to decrease both the shedder prevalence and the environmental 

bacterial load (under the assumption that effectively vaccinated animals shed in decreased 

quantities). According to epidemiological considerations, both heifers and cows should be 
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vaccinated, as administrating vaccines to heifers only is less effective: on average, to reach a 

given level of shedder prevalence takes two additional years when vaccinating heifers only. 

Performing a comparative analysis of cost-effectiveness between these two types of 

vaccination strategies would be valuable for decision making. Even in presence of vaccination, 

eradication of infection seems difficult and most of the time, takes several years. Therefore, 

before stopping a vaccination programme, it is relevant to check for the absence of C. burnetii 

within the herd. If some shedders are still present, it is likely that the infection will spread 

again after the programme is stopped. PCR on bulk tank milk samples can be a way to perform 

this verification. As shedding is intermittent and as its routes are not concomitant, this 

diagnostic test would better be repeated over time. Other control measures, and especially 

environmental ones, such as increased farm cleaning and disinfection, seem promising. 

Decreasing the life time of C. burnetii in the environment as well as the proportion of bacteria 

reaching the environment (e.g. by rapidly destroying parturition or abortion products, by 

increasing housing cleaning around calving, etc…) could strongly impact the environmental load. 

The model we developed is an adaptable tool that would allow assessing the effectiveness of a 

broad range of other control strategies in different initial situations. In the next years, it is 

then crucial to regularly update this tool as new knowledge is produced.  

Since small ruminants are often responsible for human infections, it seems relevant to adapt 

our model to represent C. burnetii spread within sheep and goat flocks. The demography of 

small ruminant populations differs from the one of cattle herds: kidding is most of the time 

synchronised. Besides, flocks can be very large (several hundreds and even thousands of animals 

per flock, as it is currently the case in the Netherlands). It would be interesting to determine 

if the flock size and type of herd management have an influence on the infection dynamics and 

to assess the effectiveness of control measures in this context. A collaborative work with the 

University of Utrecht in the framework of Lenny Hogerwerf’s PhD should answer these 

questions soon.  

As previously highlighted, Q fever is characterised by a large between-herd heterogeneity with 

some asymptomatic infected herds, while others exhibit many abortions. This variability in the 

occurrence and intensity of the clinical signs could be partly due to variability in C. burnetii 

strains involved in ruminants infections: in Arricau-Bouvery et al. [14], 36 different genotypes 

were identified among the 42 isolates from livestock and ticks investigated. However, neither 

the virulence of the different C. burnetii strains nor possible interactions between them have 

been investigated yet. If it would be shown that C. burnetii strains have different virulence or 
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shedding characteristics or interact through cross-immunity, our model should be modified to 

account for multi-strain dynamics.  

Lastly, a next step in the understanding and control of C. burnetii spread would be the study of 

the infection spread at the regional level. Likely, both cattle herds and small ruminant flocks on 

a given area have to be represented in order to understand the global infection dynamics and to 

evaluate the respective influence of herds and flocks on the infection risk. The role of 

purchase of animals, wind, and neighbouring contacts on the spread of C. burnetii between 

animal populations has also to be determined. At last, the effectiveness of control measures at 

a regional or national scale should be assessed, which would provide evidence for decision 

making.  
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Chapitre 1 : Introduction 

Coxiella burnetii est une bactérie intracellulaire stricte responsable d’une zoonose 

mondialement répandue, la fièvre Q. Le contrôle de cette infection est un enjeu crucial : 

• il s’agit tout d’abord d’un problème de santé publique : bien qu’asymptomatique dans 

plus de 60% des cas, la fièvre Q peut entraîner chez l’Homme des signes cliniques 

graves tels que pneumonies, hépatites, endocardites ou avortements. Aux Pays-Bas, une 

épidémie massive sévit depuis 2007 : plus de 3500 cas humains y ont déjà été 

confirmés. Les ruminants sont reconnus comme la principale source de contamination de 

l’Homme : les animaux infectés excrètent de grandes quantités de bactéries dans 

l’environnement via les fèces, l’urine, le lait et surtout les produits de parturition 

(placenta notamment). C. burnetii s’avérant très résistante dans l’environnement, on la 

retrouve soit sous forme d’aérosols soit dans la poussière environnante. Ces deux 

supports sont les principales sources d’infection pour l’Homme.  

• la fièvre Q constitue également un problème de santé animale : chez les ruminants, 

cette infection peut entraîner des troubles de la reproduction tels qu’avortements, 

métrites ou infertilité, engendrant des pertes économiques importantes pour les 

élevages atteints. 

Il apparaît donc essentiel de lutter contre la propagation de C. burnetii dans les troupeaux de 

ruminants domestiques afin d’améliorer les performances de ces élevages et de limiter le risque 

zoonotique. Récemment, l’Agence Européenne de Sécurité des Aliments (EFSA) a souligné le 

besoin, d’une part de quantifier les paramètres clés de l’infection, notamment les taux de 

transmission (i) au sein des troupeaux de ruminants, (ii) entre ces troupeaux et (iii) des 

populations animales à l’Homme, et d’autre part d’évaluer l’efficacité des stratégies de contrôle. 

Ce travail de thèse s’inscrit dans ce contexte général. Il a pour objectif d’améliorer la 

compréhension de la propagation de C. burnetii au sein d’un troupeau bovin laitier afin de 

proposer des stratégies de contrôle efficaces. Pour cela, nous avons développé une approche 

par modélisation: pour des raisons éthiques, logistiques et financières, des études 

observationnelles en troupeaux infectés ne peuvent pas être mises en œuvre sur le long terme 

afin d’étudier toutes les stratégies possibles de contrôle de l’infection dans l’ensemble des 

situations épidémiologiques possibles. Il nous a donc paru pertinent de développer un modèle 

mathématique de la propagation de la bactérie permettant de suivre chaque paramètre de 

l’infection et de comparer l’efficacité de différentes stratégies de maîtrise ex ante. 

Trois étapes de travail nous ont permis d’atteindre notre objectif. Un modèle représentant la 

propagation de C. burnetii au sein d’un troupeau bovin laitier a tout d’abord été conceptualisé et 



Summary in French/ Résumé en Français 

 

 162 

ses principaux paramètres épidémiologiques estimés à partir de données de terrain, en utilisant 

une approche Bayésienne (chapitre 3). Il s’avère que ces données suggéraient l’existence d’une 

forte hétérogénéité d’excrétion au sein des troupeaux infectés (les voies et durées d’excrétion 

de même que les concentrations en bactéries excrétées sont très variables d’une vache à l’autre 

et d’un moment à l’autre pour une même vache) et que la présence d’hétérogénéité au sein d’une 

population influence très souvent les dynamiques d’infection. Nous avons donc décidé de 

représenter explicitement dans une version plus complète du modèle les voies d’excrétion et les 

quantités de bactéries excrétées. Nous avons ensuite réalisé une analyse de sensibilité afin 

d’identifier les paramètres dont la variation influençait le plus la dynamique d’infection 

(chapitre 4). Enfin, nous avons représenté dans le modèle différentes stratégies de vaccination 

et comparé leurs efficacités respectives par simulation (chapitre 5).  

Chapitre 2 : Elaboration d’un modèle de propagation de C. burnetii au sein d’un 

troupeau bovin laitier et estimation de ses paramètres principaux à partir de données 

de terrain 

La 1ère partie de ce chapitre décrit les principales étapes à suivre pour construire un modèle 

épidémiologique et le confronter à des données de terrain. Nous nous focalisons dans une 2ème 

partie sur le modèle développé pour représenter la propagation de C. burnetii au sein d’un 

troupeau bovin. Comme les données de terrain sont essentielles à sa conceptualisation et à 

l’inférence de ses paramètres, nous avons tout d’abord décrit le jeu de données que nous avons 

utilisé. 235 vaches de cinq troupeaux naturellement infectés et ne présentant pas de signes 

cliniques attribuables à C. burnetii ont été prélevées entre une et cinq fois sur une période d’un 

mois. A chaque temps de prélèvement, un test sérologique ainsi que 3 tests PCR en temps réel 

(un sur lait, un sur mucus vaginal et un sur fèces) ont été réalisés. Il nous a donc été possible 

de définir le statut vis-à-vis de l’infection de chaque vache à chaque pas de temps. Au total, 

nous disposions pour 145 vaches de leur statut hebdomadaire et pour 89 autres, d’un à quatre 

statuts au cours du mois d’étude. Nous présentons ensuite le modèle élaboré : il s’agit d’un 

modèle SIR (Sensibles-Infectieux-Retirés de la chaîne de transmission) modifié, caractérisé 

par 2 classes de I (I- et I+, pour excréteurs séronégatifs et séropositifs respectivement) et 

par des transitions dans les deux sens entre S et I- et entre I+ et R. Etant donné que la 

contamination d’un animal se fait par inhalation, la probabilité d’infection (transition de S à I-) 

est supposée dépendre de la charge bactérienne dans l’environnement. Ce modèle est 

stochastique, individu-centré et en temps discret avec un pas de temps d’une semaine. Enfin, 

nous exposons dans la 3ème partie de ce chapitre, l’estimation des paramètres épidémiologiques 

de ce modèle à partir du jeu de données précédemment évoqué : une approche Bayésienne a été 
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privilégiée car elle permettait de prendre en compte les connaissances disponibles a priori et 

de gérer les données manquantes, ainsi que l’incertitude des observations due à l’imperfection 

des tests diagnostics. Par l’utilisation d’algorithmes d’estimation par Chaînes de Markov de 

Monte-Carlo, nous avons obtenu les distributions a posteriori des probabilités de transitions 

entre états de santé et de la charge bactérienne environnementale Les résultats ont montré 

que certains troupeaux étaient caractérisés par un faible risque d’infection alors que pour 

d’autres, ce risque, tout comme la probabilité d’excrétion intermittente étaient modérés. De 

plus, les excréteurs séronégatifs (I-) excrétaient moins longtemps que les excréteurs 

séropositifs (I+). 

Chapitre 3 : Représentation de l’hétérogénéité d’excrétion dans le modèle de 

propagation de C. burnetii et identification des paramètres influençant le plus la 

dynamique d’infection 

La 1ère partie de chapitre définit la notion d’hétérogénéité en population d’hôtes : elle présente 

l’impact de cette hétérogénéité sur la dynamique d’infection de nombreux pathogènes, ses 

implications en termes de contrôle et la manière dont elle est prise en compte dans la 

modélisation épidémiologique. La 2ème partie se focalise sur l’hétérogénéité d’excrétion de C. 

burnetii en troupeaux bovins : la variabilité des voies d’excrétion et des concentrations de 

bactéries excrétées observée dans le jeu de données, détaillé au chapitre 2 y est décrite. La 

3ème partie du chapitre, rappelle les différentes méthodes d’analyse de sensibilité existantes 

dans la littérature. L’analyse de sensibilité est en effet une étape cruciale du processus de 

modélisation car elle permet l’identification des paramètres influençant majoritairement la 

dynamique d’infection. Les paramètres identifiés revêtent une double importance : ils doivent 

être très précisément estimés si l’on veut améliorer les capacités prédictives du modèle et ils 

sont les cibles à privilégier pour la définition de mesures de contrôle efficaces. Enfin, la 4ème 

partie expose le modèle représentant la propagation intra troupeau de C. burnetii en incluant 

l’hétérogénéité d’excrétion, et décrit l’analyse de sensibilité que nous avons employée. Pour 

comparer l’influence des paramètres épidémiologiques sur différentes sorties temporelles du 

modèle, nous avons en effet effectué une Analyse en Composantes Principales (ACP) suivie 

d’une ANOVA. Nous avons ainsi montré que les paramètres les plus influents étaient les 

distributions de probabilité gouvernant les quantités de bactéries excrétées, principalement 

dans le mucus vaginal et les fèces, les caractéristiques de C. burnetii dans l’environnement (i.e. 

sa survie et la fraction de bactéries excrétées atteignant l’environnement) ainsi que les 

caractéristiques physiologiques liées à l’intermittence de l’excrétion et à la transition d’un type 

d’excréteur (I-) à l’autre (I+).  
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Chapitre 4 : Comparaison de l’efficacité de trois stratégies de vaccination en 

troupeaux infectés 

Dans la 1ère partie de ce chapitre, nous avons étudié quelques exemples de stratégies vaccinales 

et la manière dont elles sont représentées dans les modèles épidémiologiques de la littérature. 

Dans la 2nde partie, nous nous sommes intéressés à l’évaluation de l’efficacité relative de 

différentes stratégies de vaccination contre C. burnetii en troupeaux bovins infectés. Trois 

indicateurs temporels de la dynamique d’infection (i.e. prévalence en excréteurs, charge 

bactérienne environnementale et nombre d’avortements) ainsi que la probabilité d’extinction de 

l’infection ont en effet été simulés pour trois scénarii de vaccination ainsi qu’un scénario témoin 

sans stratégie de contrôle. Pour tous les scénarii avec vaccination, les valeurs de ces trois 

indicateurs ont baissé durant les premières années du programme de vaccination. Cependant, 

une vaccination d’une durée limitée (trois ans seulement) était souvent insuffisante pour 

éradiquer l’infection : l’arrêt du programme de vaccination entraînait donc une reprise de la 

propagation de l’infection. De plus, à la mise en place du programme, la vaccination des vaches 

et des génisses était préférable à celle des génisses seulement. Dans ce dernier cas, les 

indicateurs de la dynamique d’infection décroissaient plus lentement et le taux d’extinction de 

l’infection était deux fois plus faible que lorsque vaches et génisses étaient vaccinées.  

Chapitre 5 : Discussion générale 

La 1ère partie de ce chapitre reprend les résultats majeurs de cette thèse : nous avons mis en 

évidence une variabilité de la dynamique d’infection entre troupeaux a priori similaires (i.e. 

troupeaux infectés par C. burnetii sans signes cliniques attribuables à la maladie) et une 

variabilité de l’excrétion entre animaux. Nous avons de plus identifié les paramètres 

influençant le plus la dynamique d’infection et évalué l’efficacité relative de trois stratégies de 

vaccination. Dans une 2ème partie, nous présentons les avantages et limites de l’approche de 

modélisation. La 3ème partie discute des données disponibles et de celles qui seraient 

nécessaires pour préciser la conceptualisation et la paramétrisation du modèle ainsi que sa 

validation : la réponse immunitaire cellulaire des animaux, les premières étapes de la 

propagation de C. burnetii au sein d’un troupeau, ainsi que la viabilité et la quantification de la 

bactérie dans l’environnement mériteraient en effet d’être étudiées. Enfin, les implications et 

les perspectives de cette thèse sont énoncées dans la 4ème partie de ce chapitre. En conclusion, 

outre la première quantification des paramètres épidémiologiques de la propagation de C. 

burnetii dans un troupeau et de nouvelles interprétations des mécanismes impliqués, ce travail 

fournit une aide à la priorisation des besoins de recherche et à la définition de mesures 

efficaces pour contrôler la fièvre Q en troupeaux bovins laitiers.  
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Abstract 
 

Q fever is a worldwide zoonosis caused by Coxiella burnetii which induces reproductive 

disorders in livestock. Ruminants are also recognized as the most important source of human 
infection. Therefore, the control of this infection in cattle is crucial to limit both the infection 
in livestock and the zoonotic risk. The objective of this thesis was to better understand the 

natural course of the infection within dairy cattle herds in order to propose effective control 
measures. A stochastic individual-based model in discrete time was conceptualised to 
represent the C. burnetii spread within a dairy herd. Its main epidemiological parameters were 

assessed from field data using a Bayesian approach. As a great heterogeneity between shedder 
cows, known to impact infection dynamics, has been described, the shedding routes and levels 
were explicitly represented in a variant of the first model. The most influential parameters of 

the infection dynamics, identified through a sensitivity analysis, were the levels of shedding, 
the characteristics of the bacterium in the environment and some physiological features of 
cows. Lastly, the long-term effectiveness of three different vaccination strategies in reducing 

the shedders prevalence, the number of abortions, the environmental bacterial load, and in 
leading to infection extinction was tested by simulation. A 10-year vaccination programme for 
both cows and heifers was found to be the most effective one. Besides providing a better 
understanding of C. burnetii infection dynamics, this work can help prioritizing needs of 

research and designing effective control programmes for Q fever in cattle. 

 

 

Résumé 
 

La fièvre Q est une zoonose mondialement répandue due à Coxiella burnetii. Elle peut 
engendrer des troubles de la reproduction chez les ruminants. De plus, ces derniers 

constituent la principale source d’infection pour l’Homme. Il est donc nécessaire de lutter 
contre la propagation de C. burnetii en troupeaux bovins pour améliorer les performances de 
ces élevages et limiter le risque zoonotique. L’objectif de cette thèse a été de mieux 

comprendre la propagation de l’infection au sein d’un troupeau bovin laitier, afin de mieux la 
contrôler. Un modèle épidémiologique stochastique, individu-centré et en temps discret 
représentant la propagation intra-troupeau de C. burnetii a été développé. Ses paramètres ont 

été estimés à partir de données de terrain en utilisant une approche Bayésienne. Une forte 
hétérogénéité entre vaches excrétrices ayant été rapportée, les voies et niveaux d’excrétion 
ont été explicitement représentés dans une variante du premier modèle. Les paramètres 

influençant le plus la dynamique d’infection, identifiés par une analyse de sensibilité, étaient les 
niveaux d’excrétion, les caractéristiques de la bactérie dans l’environnement et certains traits 
physiologiques des animaux. Enfin, trois stratégies de vaccination ont été représentées dans le 

modèle et leurs efficacités à long terme ont été comparées par simulation. La vaccination des 
vaches et génisses pendant 10 ans s’est avérée la stratégie la plus efficace. En conclusion, 
outre une meilleure compréhension de la dynamique d’infection, ce travail fournit une aide à la 

priorisation des besoins de recherche et à la définition des mesures efficaces pour contrôler la 
fièvre Q en troupeaux bovins laitiers. 

 

 




